Electric Vehicle Charger Current Analysis Model under Unbalanced Voltage
Wang Jinhao1, Li Shengwen1, Chang Xiao1, Yang Chaoying1, Xu Shaobo2
1. State Grid Shanxi Electric Power Research Institute Taiyuan 030001 China; 2. State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources North China Electric Power University Beijing 102206 China
Abstract:In the process of grid operation, unbalanced three-phase load, asymmetric line parameters and asymmetric fault may cause unbalanced three-phase voltage. With the influence of unbalanced voltage component, the input current of electric vehicle charger has different operation modes, including completely discontinuous state, completely continuous state and intermediate mixed state. In order to accurately and comprehensively describe the input current characteristics of the electric vehicle charger under the condition of voltage imbalance, according to the difference of three-phase current state, a method of operating state division covering all operating conditions of the charger is proposed. Considering the influence of unbalanced voltage component and harmonic component, the current analysis models of charger in different modes, including passive power factor correction section, line equivalent impedance and AC filter inductance, are established respectively. By comparing the theoretical calculation waveform of the proposed model with the measurement results of physical experiments, the validity of the proposed modal division method and the accuracy of the proposed model are verified.
王金浩, 李胜文, 常潇, 杨超颖, 徐少博. 电压不平衡条件下电动汽车充电机电流分析模型[J]. 电工技术学报, 2021, 36(zk2): 582-590.
Wang Jinhao, Li Shengwen, Chang Xiao, Yang Chaoying, Xu Shaobo. Electric Vehicle Charger Current Analysis Model under Unbalanced Voltage. Transactions of China Electrotechnical Society, 2021, 36(zk2): 582-590.
[1] 吴赋章, 杨军, 林洋佳, 等. 考虑用户有限理性的电动汽车时空行为特性[J]. 电工技术学报, 2020, 35(7): 1563-1574. Wu Fuzhang, Yang Jun, Lin Yangjia, et al.Research on spatiotemporal behavior of electric vehicles considering the users’ bounded rationality[J]. Transactions of China Electrotechnical Society, 2020, 35(7): 1563-1574. [2] 吴理豪, 张波. 电动汽车静态无线充电技术研究综述(上篇)[J]. 电工技术学报, 2020, 35(6): 1153-1165. Wu Lihao, Zhang Bo.Overview of static wireless charging technology for electric vehicles: part Ⅰ[J]. Transactions of China Electrotechnical Society, 2020, 35(6): 1153-1165. [3] 高赐威, 张亮. 电动汽车充电对电网影响的综述[J]. 电网技术, 2011, 35(2): 127-131. Gao Ciwei, Zhang Liang.A survey of influence of electrics vehicle charging on power grid[J]. Power System Technology, 2011, 35(2): 127-131. [4] 周念成, 王佳佳, 王强钢, 等. 电动汽车三相不控整流充电机频域谐波模型[J]. 电工技术学报, 2016, 31(8): 156-162. Zhou Niancheng, Wang Jiajia, Wang Qianggang, et al.Frequency domain harmonic model of electric vehicle charger using three phase uncontrolled rectifier[J]. Transactions of China Electrotechnical Society, 2016, 31(8): 156-162. [5] 赵伟, 姜飞, 涂春鸣, 等. 电动汽车充电站入网谐波分析[J]. 电力自动化设备, 2014, 34(11): 61-66. Zhao Wei, Jiang Fei, Tu Chunming, et al.Harmonic currents of grid-connected EV charging station[J]. Electric Power Automation Equipment, 2014, 34(11): 61-66. [6] 李红梅, 张恒果, 崔超. 车载充电PWM软开关DC-DC变换器研究综述[J]. 电工技术学报, 2017, 32(24): 59-70. Li Hongmei, Zhang Hengguo, Cui Chao.Review of PWM soft-switching DC-DC converter for on-board chargers[J]. Transactions of China Electrotechnical Society, 2017, 32(24): 59-70. [7] 赵云斌, 李鹏程, 丁同, 等. 考虑多拓扑结构的电动汽车充电机对电网谐波影响分析[J]. 武汉大学学报(工学版), 2018, 51(10): 901-906. Zhao Yunbin, Li Pengcheng, Ding Tong, et al.Analysis of harmonic effects of electric vehicle charger considering multiple topologies on power grid[J]. Engineering Journal of Wuhan University, 2018, 51(10): 901-906. [8] 刘敏, 周晓霞, 陈慧春, 等. 采用三相不可控整流充电机的电动汽车充电站谐波放大效应分析与计算[J]. 电力系统保护与控制, 2016, 44(4): 36-43. Liu Min, Zhou Xiaoxia, Chen Huichun, et al.Analysis and calculation on harmonic amplification effect of electric vehicle charging station using three-phase uncontrolled rectification charger[J]. Power System Protection and Control, 2016, 44(4): 36-43. [9] 孙媛媛, 刘福朝, 李佳奇, 等.三相不控VSC的统一化谐波模型及运行状态判定[J].中国电机工程学报, 2016, 36(13): 3413-3421, 3360. Sun Yuanyuan, Liu Fuzhao, Li jiaqi, et al. Unified harmonic models and operational mode determination for the three-phase uncontrolled voltage source converters[J]. Proceedings of the CSEE, 2016, 36(13): 3413-3421, 3360. [10] 肖湘宁. 电能质量分析与控制[M]. 北京: 中国电力出版社, 2010. [11] 曾祥君, 黄明玮, 王文, 等. 配电网三相不平衡过电压有源抑制方法研究[J]. 电工技术学报, 2015, 30(9): 61-69. Zeng Xiangjun, Huang Mingwei, Wang Wen, et al.Research on active suppression method of three-phase unbalanced overvoltage for distribution networks[J]. Transactions of China Electrotechnical Society, 2015, 30(9): 61-69. [12] Fang Zhijian, Cai Tao, Duan Shanxu, et al.Performance analysis and capacitor design of three-phase uncontrolled rectifier in slightly unbalanced grid[J]. IET Power Electronics, 2015, 8(8): 1429-1439. [13] Yazdavar A H, Azzouz M A, El-Saadany E F. Harmonic analysis of three-phase diode bridge rectifiers under unbalanced and distorted supply[J]. IEEE Transactions on Power Delivery, 2020, 35(2): 904-918. [14] Mayordomo J G, Beites L F, Yang X, et al.A detailed procedure for harmonic analysis of three-phase diode rectifiers under discontinuous conduction mode and nonideal conditions[J]. IEEE Transactions on Power Delivery, 2018, 33(2): 741-751. [15] Mayordomo J G, Beites L F, Carbonero Á, et al.An analytical procedure for calculating harmonics of three-phase uncontrolled rectifiers under nonideal conditions[J]. IEEE Transactions on Power Delivery, 2015, 30(1): 144-152.