Abstract:At the AC side, the load tap changing(LTC) transformer branch is represented by introducing an artificial node located between an ideal transformer and its series impedance. The artificial node voltage can then replace the tap ratio of LTC to express the LTC branch power equations. At the DC side, some variables corresponding to the converter branch are introduced to express the DC equation, such as the AC node voltage magnitude, current magnitude, et al. The coupling equations integrate the quadratic AC and DC equations from the different coordinates into a united quadratic AC-DC load- shedding model to restore the feasible solution of the power flow. The predictor-corrector primal-dual interior point method is used to implement the optimization problem. The Hessians in this model are constant and need to be calculated only once in the entire optimal process, which speed up the calculation greatly. Numerical simulations indicate that the proposed model is corrective and effective, and gives a power flow measure for unfeasible cases.
聂永辉,杜正春,李崇涛,李天云. 恢复潮流可行的交直流电力系统切负荷新模型[J]. 电工技术学报, 2015, 30(4): 209-215.
Nie Yonghui,Du Zhengchun,Li Chongtao,Li Tianyun. A New Load-Shedding Model to Restore AC-DC Power Flow Feasibility. Transactions of China Electrotechnical Society, 2015, 30(4): 209-215.
[1] 余贻鑫, 李鹏. 基于混合法的潮流可行域边界计算[J]. 电力系统自动化, 2004, 28(13): 18-24. Yu Yixin, Li Peng. Computing the boundary of the power flow feasible region based on the hybrid method [J]. Automation of Electric Power Systems, 2004, 28(13): 18-24. [2] 余贻鑫, 李鹏, 孙强, 等. 电力系统潮流可行域边界拓扑性质及边界算法[J]. 电力系统自动化, 2006, 30(10): 6-11. Yu Yixin, Li Peng, Sun Qiang, et al. Study on topological properties of boundary of power flow feasibility region and algorithm for boundary computa- tion[J]. Automation of Electric Power Systems, 2006, 30(10): 6-11. [3] Thomas J Overbye. A power flow measurement for unsolvable cases[J]. IEEE Transactions on Power Systems, 1994, 9(3): 1359-1365. [4] 傅旭, 王锡凡. 静态安全分析中的联动切负荷算法[J]. 中国电机工程学报, 2006, 26(9): 82-86. Fu Xu, Wang Xifan. New approach to load-shedding in static state security analysis of power systems[J]. Proceedings of the CSEE, 2006, 26(9): 82-86. [5] Granville S, Mello J C O, Melo A C G. Application of interior point methods to power flow unsolvability[J]. IEEE Transactions on Power System, 1996, 11(2): 1096- 1103. [6] 郭力, 张尧, 胡金磊, 等. 恢复潮流可行解的优化控制策略[J]. 电力系统自动化, 2007, 31(16): 24-28. Guo Li, Zhang Yao, Hu Jinlei, et al. An optimal control strategy for recovering feasible solution of the power flow[J]. Automation of Electric Power Systems, 2007, 31(16): 24-28. [7] 姚煜, 蔡燕春. 离散粒子群与内点法结合的电力系统无功优化[J]. 电力系统保护与控制, 2010, 38(3): 48-52. Yao Yu, Cai Yanchun. A hybrid strategy based on DPSO and IPM for optimal reactive power flow[J]. Power System Protection and Control, 2010, 38(3): 48-52. [8] 程军照, 李澍森, 程强. 一种无功优化预测校正内点算法[J]. 电工技术学报, 2010, 25(2): 152-157. Cheng Junzhao, Li Shusen, Cheng Qiang. A predictor- corrector interior point method for optimal reactive power[J]. Transactions of China Electrotechnical Society, 2010, 25(2): 152-157. [9] 熊宁, 张魏, 黄金海, 等. 基于约束松弛变量策略的中心校正内点法[J]. 电力系统保护与控制, 2012, 40(14): 20-25. Xiong Ning, Zhang Wei, Huang Jinhai, et al. Centrality correction interior point method based on constrained slack variables strategy[J]. Power System Protection and Control, 2012, 40(14): 20-25. [10] 邸弢, 李华强, 范锫. 基于奇异值分解和内点法的交直流系统无功优化[J]. 电工技术学报, 2009, 24(2): 158-163. Di Tao, Li Huaqiang, Fan Pei. Reactive power optimization of AC/DC power system based on singular value decomposition and interior point method[J]. Transactions of China Electrotechnical Society, 2009, 24(2): 158-163. [11] Torres G L, Quintana V H. An interior-point method for nonlinear optimal power flow using voltage rectan- gular coordinates[J]. IEEE Transactions on Power System, 1998, 13(4): 1211-1218. [12] 余娟, 颜伟, 徐国禹, 等. 基于预测-校正原对偶内点法的无功优化新模型[J]. 中国电机工程学报, 2005, 25(11): 146-151. Yu Juan, Yan Wei, Xu Guoyu, et al. A new model of reactive optimization based on predictor corrector primal dual interior point method[J]. Proceedings of the CSEE, 2005, 25(11): 146-151. [13] 刘沛津, 谷立臣, 韩行. 基于内点法与改进遗传法的无功规划优化混合算法[J]. 电力系统保护与控制, 2008, 36(17): 56-59. Liu Peijin, Gu Lichen, Han Xing. Reactive power planning based on IPM and improved GA hybrid method[J]. Power System Protection and Control, 2008, 36(17): 56-59. [14] 简金宝, 杨林峰, 全然. 基于改进多中心校正解耦内点法的动态最优潮流并行算法[J]. 电工技术学报, 2012, 27(6): 232-241. Jian Jinbao, Yang Linfeng, Quan Ran. Parallel algorithm of dynamic optimal power flow based on improved multiple centrality corrections decoupling interior point method[J]. Transactions of China Electrotechnical Society, 2012, 27(6): 232-241. [15] Granville S. Optimal reactive dispatch through interior point methods[J]. IEEE Transactions on Power System, 1994, 9(1): 136-146. [16] Lu C N, Chen S S, Ong C M. The incorporation of HVDC equations in optimal power flow methods using sequential quadratic programming techniques[J]. IEEE Transactions on Power System, 1988, 3(3): 1005-1011. [17] 李兴源. 高压直流输电系统[M]. 北京: 科学出版社, 2010. [18] 王锡凡, 方万良, 杜正春. 现代电力系统分析[M]. 北京: 科学出版社, 2007. [19] 赵畹君. 高压直流输电工程技术[M]. 北京: 中国电力出版社, 2009. [20] Yu J, Yan W, Li W Y, et al. Quadratic models of AC-DC power flow and optimal reactive power flow with HVDC and UPFC controls[J]. Electric Power Systems Research, 2008, 78(3): 302-310.