Abstract:A hybrid model of wind power forecasting based on ensemble empirical mode decomposition and wavelet neural networks is proposed. Wind power signal is decomposed into several sequences by ensemble empirical mode decomposition to reduce the non-stationary of wind power. Secondly, mining the sequences characteristics by means of phase space reconstructed, and then an improved wavelet neural networks model of each component is established. Finally, the results of each component forecasting are superimposed to obtain the final forecasting result. The simulation results validate that the hybrid model has higher prediction accuracy and greater potential for engineering applications.
王贺, 胡志坚, 陈珍, 仉梦林, 贺建波, 李晨. 基于集合经验模态分解和小波神经网络的短期风功率组合预测[J]. 电工技术学报, 2013, 28(9): 137-144.
Wang He, Hu Zhijian, Chen Zhen, Zhang Menglin, He Jianbo, Li Chen. A Hybrid Model for Wind Power Forecasting Based on Ensemble Empirical Mode Decomposition and Wavelet Neural Networks. Transactions of China Electrotechnical Society, 2013, 28(9): 137-144.
[1] 张丽英, 叶廷路, 辛耀中, 等. 大规模风电接入电网的相关问题及措施[J]. 中国电机工程学报, 2010, 30(25): 1-9. Zhang Liying, Ye Tinglu, Xin Yaozhong, et al. Problems and measures of power grid accommodating large scale wind power[J]. Proceedings of the CSEE, 2010, 30(25): 1-9. [2] Pei Y C, Pedersen T, Bak J B, et al. ARIMA-based time series model of stochastic wind power generation[J]. IEEE Transactions on Power Systems, 2010, 25(2): 667-676. [3] 冬雷, 王丽婕, 高爽. 基于混沌时间序列的大型风电场发电功率预测建模与研究[J]. 电工技术学报, 2008, 23(12): 125-129. Dong Lei, Wang Lijie, Gao Shuang. Modeling and analysis of prediction of wind power generation in the large wind farm based on chaotic time series[J]. Transactions of China Electrotechnical Society, 2008, 23(12): 125-129. [4] Rajesh G K, Krithika S. Day-ahead wind speed forecasting using f-ARIMA models[J]. Renewable Energy, 2009, 34(5): 1388-1393. [5] Peiyuan C, Pedersen T, Bak J B, et al. ARIMA-based time series model of stochastic wind power generation[J]. IEEE Transactions on Power Systems, 2010, 25(2): 667-676. [6] Cadenas E, Rivera W. Wind speed forecasting in three different regions of Mexico, using a hybrid ARIMA-ANN model[J]. Renewable Energy, 2010, 35(7): 2732-2738. [7] 杨锡运, 孙宝君, 张新房, 等, 基于相似数据的支持向量机短期风速预测仿真研究[J]. 中国电机工程学报, 2012, 32(4): 35-41. Yang Xiyun, Sun Baojun, Zhang Xinfang, et al. Short-term wind speed forecasting based on support vector machine with similar data[J]. Proceedings of the CSEE, 2012, 32(4): 35-41. [8] Monfared M, Rastegar H, Kojabadi H M. A new strategy for wind speed forecasting using artificial intelligent methods[J]. Renewable Energy, 2009, 34(5): 845-848. [9] Huang N E, Shen Z, Long S R. The empirical mode decomposition and the Hilbert spectrum for nonlinear and-non-stationary time series analysis [J]. Proceedings of the Royal Society Soc Land, 1998, 454(1971): 903-995. [10] Wu Z, Huang N E. Ensemble empirical mode decomposition: a noise-assisted data analysis method[J]. Advances in Adaptive Data Analysis, 2009, 1(1): 1-41. [11] 孙斌, 姚海涛, 刘婷, 基于高斯过程回归的短期风速预测[J]. 中国电机工程学报, 2012, 32(29): 104-109. Sun Bin, Yao Haitao, Liu Ting. Short-term wind speed forecasting based on Gaussian process regression model[J]. Proceedings of the CSEE, 2012, 32(29): 104-109. [12] Kim H S, Eykholt R, Salas J D. Nonlinear dynamics, delay times and embedding windows[J]. Physica D, 1999, 127: 48-60. [13] 罗欣, 周渝慧, 郭宏榆. 基于混沌因子及相空间重构后的神经网络短期电价预测的研究[J]. 继电器, 2008, 36(1): 48-52. Luo Xin, Zhou Yuhui, Guo Hongyu. Short-term price forecasting based on chaotic property and phase space recostructed neural networks[J]. Relay, 2008, 36(1): 48-52. [14] Chen Y, Peter B L, Guan C, et al. Short-term load Forecasting: similar day-based wavelet neural networks[J]. IEEE Transactions on Power Systems, 2010, 25(1): 322-330. [15] Guan C, Peter B L, Michel L D, et al. Very short-term load forecasting: wavelet neural networks with Data Pre-Filtering[J]. IEEE Transactions on Power Systems, 2013, 28(1): 30-41. [16] 侯逸文, 沈炯, 李益国. 基于小波神经网络的火电单元机组负荷系统建模仿真研究[J]. 中国电机工程学报, 2003, 23(10): 220-224. Hou Yiwen, Shen Jiong, Li Yiguo. A simulation study on load modeing of a thermal power unit based on wavelet neural networks[J]. Proceedings of the CSEE, 2003, 23(10): 220-224. [17] 王丽婕, 冬雷, 廖晓钟, 等, 基于小波分析的风电场短期发电功率预测[J]. 中国电机工程学报, 2009, 29(28): 30-33. Wang Lijie, Dong Lei, Liao Xiaozhong, et al, Short-term power prediction of a wind farm based on wavelet analysis[J]. Proceedings of the CSEE, 2009, 29(28): 30-33. [18] 张春晓, 张涛. 基于最小二乘支持向量机和粒子群算法的两相流含油率软测量方法[J]. 中国电机工程学报, 2010, 30(2): 86-91. Zhang Chunxiao, Zhang Tao. Soft measurement method for oil holdup of two phase flow based on least squares support vector machine and particle swarm optimization[J]. Proceedings of the CSEE, 2010, 30(2): 86-91.