Cooling Characteristics and Performance of the 330MW Evaporative Cooling Turbo Generator
Guo Jianhong1, Gu Guobiao1, Fu Deping1, Huang Deshu2
1. Institute Electrical Engineering Chinese Academy of Sciences Beijing 100080 China 2. The Shanghai Turbo Generator Limited Company Shanghai 200240 China
Abstract:In our country, research and study on the evaporative cooling technology for the large scale generator has a history of more than 60 years. In recent years, the development of the evaporative cooling technology has moved out from the laboratory experiment to industrial and commercial application. In this article, the characteristics of the evaporative cooling technology are introduced, and then based on the 300MW evaporative cooling turbine generator as an example, the stator winding temperature field simulation based on the two-phase flow and heat transfer theory is provided; a 3D stator temperature field numerical calculation using the finite element method is conducted to provide the temperature distribution of the calculation region of the generator. Based on the simulation results a sample device was built for testing. According to the testing results the highest temperature rise of the motor stator winding immersed in the evaporative cooling medium is less than 42K, and the highest temperature rise in the core is less than 15K, far below the turbine generator cooling technical requirement. The testing results demonstrate that the evaporative cooling is feasible for the 300MW turbine generator, and comparison of the testing results with the simulation demonstrates the accuracy of the simulation and simulations feasibility for greater capacity power generator development.
[1] 倪天军. 大型发电机主要冷却方式及特点[J]. 东方电气评论, 2007, 20(1): 31-37. Ni Tianjun. Major cooling methods and features of large gengerator[J]. Dongfang Electric Review, 2007, 20(1): 31-37. [2] 颜正辉, 王拯元. 赵昌宗. 汽轮发电机设计回顾与展望[J]. 东方电机, 2008(3-4): 55-68. [3] 关达生, 曹文. 空冷200MW汽轮发电机与氢冷200MW汽轮发电机的比较[J]. 黑龙江电力, 2010(1): 3-5. Guan Dasheng, Cao Wen. Compare 200MW air- cooled turbo-generator with 200MW hydrogen-cooled turbo-generator[J]. Heilongjiang Electric Power, 2010(1): 3-5. [4] 杨俊东. 南汽350MW空冷汽轮发电机[J]. 科技资讯, 2009(5): 155-156. [5] 廖毅刚, 侯小全, 周光厚, 三峡地下电厂水轮发电机蒸发冷却模拟试验研究[J]. 上海大中型电机, 2010(1): 59-62. [6] 傅德平, 朱荣建. 50MW蒸发冷却汽轮发电机运行情况[J]. 电力设备, 2001, 2(3): 32-34. Fu Deping, Zhu Rongjian. Operation of 50 MW turbo generator with evaporative cooling[J]. Electrical Equipment, 2001, 2(3): 32-34. [7] 汪耕, 黄德书. 60MW 定子氟利昂蒸发冷却转子水内冷汽轮发电机的研制[J]. 科技情报, 1992(2). [8] 丁舜年. 大型电机的发热与冷却[M]. 北京: 科学出版社, 1992. [9] 林瑞泰. 沸腾换热[M]. 北京: 科学出版社, 1988. [10] 徐济鋆. 沸腾传热和汽液两相流[M]. 北京: 原子能出版社, 2001. [11] 栾茹, 傅德平, 唐龙尧. 新型全浸式蒸发冷却汽轮发电机定子三维温度场的研究[J]. 中国电机工程学报, 2004, 24(8): 205-209. Luan Ru, Fu Deping, Tang Longyao. Study on 3D temperature distribution in new evaporative cooling asynchronous generator[J]. Proceedings of the CSEE, 2004, 24(8);205-209. [12] 温志伟, 顾国彪, 王海峰. 浸润式与强迫内冷结合的蒸发冷却汽轮发电机定子三维温度场计算[J]. 中国电机工程学报, 2006, 12(23): 133-138. Wen Zhiwei, Gu Guobiao, Wang Haifeng. Calculation of 3D thermal field in the stator of turbo generator with immersion evaporative-cooling system and forced inner-cooling[J]. Proceedings of the CSEE, 2006, 12(23): 133-138. [13] 刘伟. 大型电机定子绕组内部蒸发冷却的数值模拟[D]. 保定: 华北电力大学, 2009. [14] 国建鸿, 傅德平. 300MW汽轮发电机强迫循环蒸发冷却定子绕组温升计算[J]. 中国电机工程学报, 2008, 28(26): 92-97. Guo Jianhong, Fu Deping. Calculation of temperature distribution of larger evaporative cooling turbo-generator with forced inner cooling system[J]. Proceedings of the CSEE, 2008, 28(26): 92-97. [15] 刘隆波, 金家善. 电机定子蒸发冷却温度场研究[J]. 船海工程, 2009(2). Liu Longbo, Jin Jiashan. On the temperature field of evaporation cooling electromotor stator[J]. Ship & Ocean Engineering, 2009(2). [16] 国建鸿, 傅德平, 李振国, 等. 大型蒸发冷却汽轮发电机定子绕组温度计算[J]. 电机与控制学报, 2008, 12(5): 509-513. Guo Jianhong, Fu Deping, Li Zhenguo, et al. Calculation of temperature distribution in the stator of larger evaporative cooling turbo-generator[J]. Electric Machines and Control, 2008, 12(5): 509-513.