Abstract:The time-domain characteristics of weights and errors in analog adaptive interference cancellation system with integral control and low-pass control are analyzed. Under low-pass control, which is different with integral control, the residual error is not zero. But the convergence speed of low-pass control is faster than that of integral control. The analysis of neglecting high frequency can not reflect the different damp characteristics and the calculations are approximate. Adjusting the time constant of low-pass filter instead of increasing the gain out of the low-pass filter can improve the interference cancellation ratio and maintain the 3dB bandwidth.
蒋云昊, 潘启军, 唐健, 李毅. 自适应干扰对消系统中的积分控制与低通控制[J]. 电工技术学报, 2011, 26(12): 148-155.
Jiang Yunhao, Pan Qijun, Tang Jian, Li Yi. Integral Control and Low-Pass Control in Adaptive Interference Cancellation System. Transactions of China Electrotechnical Society, 2011, 26(12): 148-155.
[1] Widrow B, Glover J R, Cool Mc J M, et al. Adaptive noise cancelling: principles and applications[J]. Proceedings of the IEEE, 1975, 63(12): 1692-1716. [2] Glover J R. Adaptive noise canceling applied to sinusoidal interferences[J]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1977, 25(6): 484-491. [3] Widrow B, Kamenetsky M. On the statistical efficiency of the LMS family of adaptive algorithms[C]. Proceedings of the International Joint Conference on Neural Networks, 2003: 2872-2880. [4] Flores A, Widrow B. Assessment of the efficiency of the LMS algorithm based on spectral information[C]. Conference Record of the 38th Asilomar Conference on Signals, Systems and Computers, 2004: 120-124. [5] Kamenetsky M, Widrow B. A variable leaky LMS adaptive algorithm[C]. Conference Record of the 38th Asilomar Conference on Signals, Systems and Computers, 2004: 125-128. [6] Akhtar M T, Abe M, Kawamata M. A new variable step size LMS algorithm-based method for improved online secondary path modeling in active noise control systems[J]. IEEE Transactions on Audio, Speech and Language Processing, 2006, 14(2): 720-726. [7] Tobias O J, Seara R. On the LMS algorithm with constant and variable leakage factor in a nonlinear environment[J]. IEEE Transactions on Signal Processing, 2006, 54(9): 3448-3458. [8] Zhang Y G, Chambers J A, Sanei S, et al. A new variable tap-length LMS algorithm to model an exponential decay impulse response [J]. IEEE Signal Processing Letters, 2007, 14(4): 263-266. [9] 李嘉全, 王永. 一种新的滤波X-LMS算法研究[J]. 振动与冲击, 2008, 27(3): 5-9. [10] Wang Z L, Zhang X W. A high performance speech enhancement algorithm based on double-channel adaptive noise cancelling[C]. IEEE International Symposium on Microwave, Antenna, Propagation and EMC Technologes for Wireless Communications Proceedings, 2005:983-986. [11] Das D P, Panda G, Kuo S M. New block filtered-X LMS algorithms for active noise control systems[J]. IET Signal Processing, 2007, 1(2): 73-81. [12] 周峰, 李亚超, 邢孟道, 等. 利用改进的LMS算法抑制时变SAR窄带干扰的研究[J]. 电波科学学报, 2007, 22(5): 722-727. [13] Huang Y F, Hung H L, Wen J. Performance of a novel adaptive multistage full parallel interference canceller for CDMA systems[J]. IEEE Transactions on Vehicular Technology, 2008, 57(3): 1944-1941. [14] Paschedag J, Lohmann B. Error convergence of the filtered-X LMS algorithm for multiple harmonic excitation[J]. IEEE Transactions on Audio, Speech, and Language Processing, 2008, 16(5): 989-999. [15] Compton R T. The effect of integrator pole position on the performance of an adaptive array[J]. IEEE Transactions on Aerospace and Electronic Systems, 1981, 17(4): 598-602.