Abstract:Laser doping is an ideal technology option in preparation of highly efficient crystalline solar cells for its advantages, such as strong controllable, simple process, and little laser-induced damage to materials. This paper summarizes the research of laser-doping at home and abroad, introduces the main laser technology in doping preparation of crystalline silicon solar cells, and analyzes the influence of laser density of energy, laser pulse number, laser wavelength and surface textured or not to laser doping effects, as well as the advantages and characteristics of crystalline silicon solar cells fabricated by laser-doping.
李涛, 周春兰, 赵雷, 李海玲, 刁宏伟, 刘振刚, 王文静. 激光掺杂制备晶体硅太阳电池研究进展[J]. 电工技术学报, 2011, 26(12): 141-147.
Li Tao, Zhou Chunlan, Zhao Lei, Li Hailing, Diao Hongwei, Liu Zhengang, Wang Wenjing. Research Progress of Laser Doping in Preparation of Crystalline Silicon Solar Cells. Transactions of China Electrotechnical Society, 2011, 26(12): 141-147.
[1] Schultz O, Glunz S, Warta W, et al. High-efficiency solar cells with laser-grooved buried contact front and laser-fired rear for industrial production[C]. Proceedings of the 21st European Photovoltaic Solar Energy Conference, Dresden, 2006: 826-830. [2] Bruton T, Mason N, Roberts S, et al. Towards 20% efficient silicon solar cells manufactured at 60 MWP per annum[C]. Proceedings of the 3rd World Conference on Photovoltaic Energy Conversion, Osaka, Japan, 2003: 899-903. [3] Chong C, Wenham S, Green M. High-efficiency, laser grooved, buried contact silicon solar cells[J]. Applied Physics Letters, 1988, 52: 407-409. [4] Morilla C, Russell R, Fernandez J, et al. Laser induced ablation and doping processes on high efficiency silicon solar cells[C]. Proceedings of the 23rd European Photovoltaic Solar Energy Conference and Exhibition, Valencia, 2008: 812-815. [5] Kray D, Aleman M, Fell A, et al. Laser-doped silicon solar cells by laser chemical processing (lcp) exceeding 20% efficiency[C]. Proceedings of the 33rd IEEE Photovoltaic Specialist Conference, California, USA, 2008: 786-789. [6] Schroder D, Meier D. Solar cell contact resistance-a review[J]. IEEE Transactions on Electron Devices, 1984, 31(5): 637-647. [7] Ametowabla M, Esturo-Breton A, Kohler J R, et al. Laser processing of crystalline silicon solar cells[C]. Proceedings of the 31st IEEE Conference Record of the Photovoltaic Specialists, 2005: 1277-1280. [8] Plaza C J, Torres J A, Malik O, et al. Very shallow boron junctions in Si by implantation and SOD diffusion obtained by RTP[J]. Microelectronics Journal, 2008, 39(3): 678-681. [9] Abbott M D. Advanced laser processing and photoluminescence characterisation of high efficiency silicon solar cells[D]. Sydney, Australia: University of New South Wales, 2006. [10] Eisele S J, Roder T C, Kohler J R, et al. 18.9% efficient full area laser doped silicon solar cell[J]. Applied Physics Letters, 2009, 95(13): 3501-3504. [11] Koyo H, Yoshiyuki N, Akiyoshi O, et al. Profile controlled laser doping for n-type silicon solar cells[C]. Proceedings of the 22nd European Photovoltaic Solar Energy Conference, Milan, Italy, 2007: 685-689. [12] Colville F. Laser-assisted selective emitters and the role of laser doping[J]. Photovoltaics International, 2009(5): 7-11. [13] Deutsch T, Fan J, Turner G, et al. Efficient Si solar cells by laser photochemical doping[J]. Applied Physics Letters, 1981, 38(3): 144-146. [14] Kato S, Nagahori T, Matsumoto S. ArF excimer laser doping of boron into silicon[J]. Journal of Applied Physics, 1987, 62: 3656-3659. [15] Sera K, Okumura F, Kaneko S, et al. Excimer-laser doping into Si thin films[J]. Journal of Applied Physics, 1990, 67: 2359-2363. [16] Stuck R, Fogarassy E, Muller J, et al. Laser-induced diffusion by irradiation of silicon dipped into an organic solution of the dopant[J]. Applied Physics Letters, 1981, 38: 715-719. [17] Fell A, Mayer K, Hopman S, et al. Potential and limits of chemical enhanced deep cutting of silicon with a coupled laser-liquid jet[J]. Journal of Laser Applications, 2009, 21: 27-31. [18] Kray D, Fell A, Hopman S, et al. Laser chemical processing (LCP) - a versatile tool for microstructuring applications[J]. Applied Physics a-Materials Science & Processing, 2008, 93(1): 99-103. [19] Kray D, Mcintosh K R. Analysis of selective phosphorous laser doping in high-efficiency solar cells[J]. IEEE Transactions on Electron Devices, 2009, 56(8): 1645-1650. [20] Rodofili A, Fell A, Hopmann S, et al. Local p-type back surface fields via laser chemical processing (lcp): first experiments[C]. Proceedings of the 23rd European Photovoltaic Solar Energy Conference and Exhibition, Valencia, Spain, 2008: 1808-1812. [21] Hopman S, Fell A, Mayer K, et al. Characterization of laser doped silicon wafers with laser chemical processing[C]. Proceedings of the 22nd European Photovoltaic Solar Energy Conference and Exhibition, Milan, Italy, 2007: 21-26. [22] Fell A. Simulation of phase changes and dopant diffusion in silicon for the selective emitter with laser chemical processing[C]. Proceedings of the 23rd European Photovoltaic Solar Energy Conference and Exhibition, Valencia, 2008: 615-618. [23] Narayan J, Young R, Wood R, et al. p-n junction formation in boron-deposited silicon by laser-induced diffusion[J]. Applied Physics Letters, 1978, 33: 338-341. [24] Sameshima T, Usui S, Sekiya M. Laser-induced melting of predeposited impurity doping technique used to fabricate shallow junctions[J]. Journal of Applied Physics, 1987, 62: 711-715. [25] Wong Y W, Yang X Q, Chan P W, et al. Excimer- laser doping of spin-on dopant in silicon[J]. Applied Surface Science, 1993, 64(3): 259-263. [26] Venturini J, Hernandez M, Kerrien G, et al. Excimer laser thermal processing of ultra-shallow junction: laser pulse duration[J]. Thin Solid Films, 2004, 453: 145-149. [27] Kerrien G, Boulmer J, Debarre D, et al. Ultra-shallow, super-doped and box-like junctions realized by laser-induced doping[J]. Applied Surface Science, 2002, 186(1-4): 45-51. [28] Ogane A, Hirata K, Horiuchi K, et al. Laser-doping technique using ultraviolet laser for shallow doping in crystalline silicon solar cell fabrication[J]. Japanese Journal of Applied Physics, 2009, 48(7): 1201-1205. [29] Mahir Okanovic, Ulrich Jäger, Marc Ahrens, et al. Influence of different laser parameters in laser doping from phosphosilicate glass[C]. Proceedings of the 24th European PV Solar Energy Conference and Exhibition, Hamburg, Germany, 2009: 578-582.