|
|
An Ultra High Frequency Induction Heating Source Based on Unidirectional Pulse Circuit and SiC Device |
Shi Xinchun1, Ma Mangyuan1, Chai Yanpeng2, Li Yabin1, Fu Chao1 |
1. Department of Electrical and Electronic Engineering North China Electric Power University Baoding 071003 China; 2. Baoding Sifang Sanyi Electric Co. Ltd Baoding 071051 China |
|
|
Abstract This paper proposes an ultrahigh frequency Induction heating source based on unidirectional pulse circuit and SiC device for the problems of power limitation, voltage-current impulse and switch losses. The RLC parallel resonant load and unidirectional pulse circuit are adopted to increase the output power of the ultrahigh frequency source. A new type of SiC MOSFET is adopted as switch device with short switching time, so the working frequency can be improved. In addition, a large inductor is connected with the bus-bar in series, absorbing the stray inductance of the bus-bar, and the direct current can not generate the voltage impact. Meanwhile, the connection line adopts a simple parallel bus-bar structure and reduces the line stray inductance, so the voltage impact of the switching device will be decreased. The switching device is operated in soft switching model, and the switching loss can be reduced. The working principle and characteristics of the circuit are analyzed and verified by simulation and 1MHz/1kW prototype.
|
Received: 15 January 2020
|
|
|
|
|
[1] 李定宣, 丁增敏. 现代高频感应加热电源工程设计与应用[M]. 北京: 中国电力出版社, 2012. [2] Hinchliffe S, Hobson L.High power class-E amplifier for high-frequency induction heating applications[J]. Electronics Letters, 1988, 24(14): 886-888. [3] Hinchliffe S, Hobson L.High frequency (>1MHz) convertors for induction heating applications[J]. Electronics Letters, 1988, 24(11): 697-698. [4] Fujita H, Akagi H.A 2MHz 2kW voltage-source inverter for low temperature plasma generators: implementation of fast switching with a third-order resonant circuit[J]. IEEE Transactions on Industry Applications, 1999, 35(1): 21-27. [5] Fujita H, Akagi H, Shinohara S.A 2MHz 6kVA voltage-source inverter using low-profile MOSFET modules for low-temperature plasma generators[J]. IEEE Transactions on Power Electronics, 1999, 14(6): 1014-1020. [6] Puyal D, Bemal C, Burdio J M, et al.Dual 1.5MHz 3.5kW versatile half-bridge series-resonant inverter module for inductive load characterization[C]//APEC 07-Twenty-Second Annual IEEE Applied Power Electronics Conference and Exposition, Anaheim, CA, USA, 2007: 1133-1139. [7] Puyal D, Bernal C, Burdío J M, et al.Versatile high-frequency inverter module for large-signal inductive loads characterization up to 1.5 MHz and 7kW[J]. IEEE Transactions on Power Electronics, 2008, 23(1): 75-87. [8] 王正仕, 楼珍丽, 陈辉明. 兆赫级超高频感应加热电源电路的分析与研究[J]. 中国电机工程学报, 2007, 27(19): 80-86. Wang Zhengshi, Lou Zhenli, Chen Huiming.Analysis and research on a Mega-Hz-level super high frequency induction heating power supply converter[J]. Proceedings of the CSEE, 2007, 27(19): 80-86. [9] 王正仕, 楼珍丽, 陈辉明. 零电压双LLC谐振软开关超高频感应加热电源变换器[J]. 电工技术学报, 2007, 22(9): 99-106. Wang Zhengshi, Lou Zhenli, Chen Huiming.Zero voltage dual-LLC resnoant soft switching converter for super high frequency induction heating power supplier[J]. Transactions of China Electrotechnical Society, 2007, 22(9): 99-106. [10] 李时峰, 吕默影, 陈辉明. 一种新型超高频感应加热混合全桥逆变器[J]. 电工技术学报, 2013, 28(3): 215-221. Li Shifeng, Lü Moying, Chen Huiming.A novel hybrid full-bridge inverter for ultra-high frequency induction heating applications[J]. Transactions of China Electrotechnical Society, 2013, 28(3): 215-221. [11] 徐殿国, 管乐诗, 王懿杰, 等. 超高频功率变换器研究综述[J]. 电工技术学报, 2016, 31(19): 26-36. Xu Dianguo, Guan Yueshi, Wang Yijie, et al.Review on very high frequency power converters[J]. Transa-ctions of China Electrotechnical Society, 2016, 31(19): 26-36. [12] 冷朝霞, 刘庆丰. 基于多电平逆变器的感应加热双频率输出设计[J]. 电工技术学报, 2016, 31(24): 195-204. Leng Zhaoxia, Liu Qingfeng.Design of dual frequency output of induction heating based on multilevel inverter[J]. Transactions of China Electro-technical Society, 2016, 31(24): 195-204. [13] 卢华, 胡金刚, 毕闯, 等. 基于中心抽头变压器的倍频感应加热电源[J]. 电工技术学报, 2016, 31(24): 188-194. Lu Hua, Hu Jingang, Bi Chuang, et al.Frequency doubling power supply for induction heating based on center-tapped transformer[J]. Transactions of China Electrotechnical Society, 2016, 31(24): 188-194. [14] 王晓娜, 方旭, 唐波, 等. 脉冲式感应加热电源频率跟踪技术的研究与实现[J]. 电工技术学报, 2018, 33(18): 4357-4364. Wang Xiaona, Fang Xu, Tang Bo, et al.Research and implementation of a frequency tracking technology for the pulsed induction heating power[J]. Transa-ctions of China Electrotechnical Society, 2018, 33(18): 4357-4364. [15] Wang Jianjing, Henry Shu-hung Chung, River Tin-ho Li. Characterization and experimental assessment of the effects of parasitic elements on the MOSFET switching performance[J]. IEEE Transactions on Power Electronics, 2013, 28(1): 573-590. [16] Nayak P, Krishna M V, Vasudevakrishna K, et al.Study of the effects of parasitic inductances and device capacitances on 1200V, 35A SiC MOSFET based voltage source inverter design[C]//IEEE Inter-national Conference on Power Electronics, Drives and Energy Systems, Mumbai, 2014, DOI: 10.1109/ PEDES.2014.7042035. [17] Nayak P, Hatua K.Modeling of switching behavior of 1200V SiC MOSFET in presence of layout parasitic inductance[C]//IEEE International Conference on Power Electronics, Drives and Energy Systems, Trivandrum, India, DOI: 10.1109/PEDES.2016.7914372. [18] 胡聪权, 赵丽君, 马良, 等. 双开关T型并联谐振逆变器拓扑结构研究[J]. 电力电子技术, 2012, 46(8): 71-73. Hu Congquan, Zhao Lijun, Ma Liang, et al.Research on topological structure of double switch T-typle parallel resonant inverter[J]. Power Electronics Technology, 2012, 46(8): 71-73. [19] 李辉, 黄樟坚, 廖兴林, 等. 一种抑制SiC MOSFET桥臂串扰的改进门极驱动设计[J]. 电工技术学报, 2019, 34(2): 275-285. Li Hui, Huang Zhangjian, Liao Xinglin, et al.An improved SiC MOSFET gate driver design for crosstalk suppression in a phase-leg configuration[J]. Transactions of China Electrotechnical Society, 2019, 34(2): 275-285. [20] 王莉娜, 邓洁, 杨军一, 等. Si和SiC功率器件结温提取技术现状及展望[J]. 电工技术学报, 2019, 34(4): 703-716. Wang Lina, Deng Jie, Yang Junyi, et al.Junction temperature extraction methods for Si and SiC power devices-a review and possible alternatives[J]. Transa-ctions of China Electrotechnical Society, 2019, 34(4): 703-716. [21] 王希平, 李志刚, 姚芳. 模块化多电平换流阀IGBT器件功率损耗计算与结温探测[J]. 电工技术学报, 2019, 34(8): 1636-1646. Wang Xiping, Li Zhigang, Yao Fang.Power loss calculation and junction temperature detection of IGBT devices for modular multilevel valve[J]. Transactions of China Electrotechnical Society, 2019, 34(8): 1636-1646. [22] 万萌, 应展烽, 张伟. 分立型功率MOSFET结温估计的非线性热网络模型和参数辨识方法[J]. 电工技术学报, 2019, 34(12): 2477-2488. Wan Meng, Ying Zhanfeng, Zhang Wei.Nonlinear thermal network model and parameter identification method for junction temperature estimation of discrete power MOSFET[J]. Transactions of China Electrotechnical Society, 2019, 34(12): 2477-2488. [23] 吴海富, 张建忠, 赵进, 等. SiC MOSFET短路检测与保护研究综述[J]. 电工技术学报, 2019, 34(21): 4519-4528. Wu Haifu, Zhang Jianzhong, Zhao Jin, et al.Review of short-circuit detection and protection of silicon carbide MOSFETs[J]. Transactions of China Electro-technical Society, 2019, 34(21): 4519-4528. [24] Sarnago H, Lucia O, Mediano A.Design and implementation of a high-efficiency multiple-output resonant converter for induction heating applications featuring wide bandgap devices[J]. IEEE Transa-ctions on Power Electronics, 2014, 29(5): 2539-2549. [25] Yuan Xibo, Walder S, Oswald N.EMI generation characteristics of SiC and Si diodes: influence of reverse-recover characteristics[J]. IEEE Transactions on Power Electronics, 2015, 30(3): 1131-1136. [26] Wang Liang, Zhang Donglai, Wang Yi.High per-formance solid-state switches using series-connected SiC MOSFETs for high voltage applications[C]//2016 IEEE 8th International Power Electronics and Motion Control Conference, Hefei, China, 2016, DOI: 10. 1109/ IPEMC.2016.7512546. [27] Song Xiaoqing, Huang A Q, Sen S, et al.15kV/40A FREEDM supercascode: a cost-effective SiC high-voltage and high-frequency power switch[J]. IEEE Transactions on Industry Applications, 2017, 53(6): 5715-5727. [28] Zhang Lei, Yuan Xibo, Wu Xiaojie.Performance evaluation of high-power SiC MOSFET modules in comparison to Si IGBT modules[J]. IEEE Transa-ctions on Power Electronics, 2019, 34(2): 1181-1196. [29] Palanisamy S, Kowalsky J, Lutz J, et al.Repetitive surge current test of SiC MPS diode with load in bipolar regime[C]//Proceedings of the 30th Inter-national Symposium on Power Semiconductor Devices & ICs, Chicago, USA, 2018: 367-370. [30] Starzak Ł, Stefanskyi A, Zubert M, et al.Improve-ment of an electro-thermal model of SiC MPS diodes[J]. IET Power Electronics, 2018, 11(4): 660-667. [31] 张汉三. 电力器件用的6H-SiC, 3C-SiC和Si的比较[J]. 半导体情报, 1995, 32(5): 23-32. Zhang Hansan.Comparison of 6H-SiC, 3C-SiC and Si for power devices[J]. Semiconductor Intelligence, 1995, 32(5): 23-32. |
|
|
|