|
|
Wide Load Range Very High Frequency Power Conversion Technology: Resonant Parameter Design and Matching Network Construction |
Guan Yueshi, Liu Chang, Wang Yijie, Xu Dianguo |
College of Electrical Engineering Harbin Institute of Technology Harbin 150001 China |
|
|
Abstract With the fast development of power electronics, very high frequency (VHF) power converters (30~300MHz) have gradually become a research focus, which can greatly reduce the value and, volume of passive components and while improving the system power density. Traditional research mainly focuses on the parameter design of the inverter with fixed load, and the designed converter based on this method has high parameter sensitivity. However, the load of the inverter varies in a wide range in the actual scene, which poses challenges to the efficient operation of the VHF conversion system. In this paper, the resonant parameters and matching network of the wide load range VHF converter are summarized, and the parameter design methods of the VHF power converter are introduced and compared. Meanwhile, the impedance conversion and compression network structure suitable for the VHF power converter are discussed and analyzed, which can provide a reference for further research of on the highly efficiency efficient operation of the VHF converter.
|
Received: 21 June 2022
|
|
|
|
|
[1] 韩冲, 张波. 谐振式无线电能传输系统中高频逆变器的特性分析和参数设计[J]. 电工技术学报, 2018, 33(21): 5036-5050. Han Chong, Zhang Bo.Characteristics analysis and parameters design of high frequency inverters in magnetic coupling resonance wireless power transfer system[J]. Transactions of China Electrotechnical Society, 2018, 33(21): 5036-5050. [2] 徐殿国, 管乐诗, 王懿杰, 等. 超高频功率变换器研究综述[J]. 电工技术学报, 2016, 31(19): 26-36. Xu Dianguo, Guan Yueshi, Wang Yijie, et al.Review on very high frequency power converters[J]. Transa- ctions of China Electrotechnical Society, 2016, 31(19): 26-36. [3] Perreault D J, Hu Jingying, Rivas J M, et al.Oppor- tunities and challenges in very high frequency power conversion[C]//2009 Twenty-Fourth Annual IEEE Applied Power Electronics Conference and Expo- sition, Washington, USA, 2009: 1:14. [4] 王镇道, 赵亚魁, 章兢, 等. LLC半桥式谐振变换器参数模型与设计[J]. 电工技术学报, 2012, 27(12): 51-55. Wang Zhendao, Zhao Yakui, Zhang Jing, et al.Parameter model and design for LLC resonant half-bridge converter[J]. Transactions of China Elec- trotechnical Society, 2012, 27(12): 51-55. [5] Pilawa-Podgurski R C N, Sagneri A D, Rivas J M, et al. Very-high-frequency resonant Boost converters[J]. IEEE Transactions on Power Electronics, 2009, 24(6): 1654-1665. [6] Rivas J M, Jackson D, Leitermann O, et al.Design considerations for very high frequency DC-DC converters[C]//2006 37th IEEE Power Electronics Specialists Conference, Jeju, Korea (South), 2006: 1-11. [7] Hertel J C, Nour Y, Knott A.Integrated very high frequency switch mode power supplies: design considerations[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2018, 6(2): 526-538. [8] Razzak M A, Suzuki Y, Takamura S, et al.High pressure radio frequency induction thermal plasma generation using T-LCL immittance circuit[C]//2006 37th IEEE Power Electronics Specialists Conference, Jeju, Korea (South), 2006: 1-1. [9] Green A M.Operation of inverters supplying mutually coupled induction heating loads[C]//IEE Colloquium on Electromagnetics and Induction Heating, London, UK, 1996: 1-3. [10] Liu Ming, Chen Minjie.Dual-band wireless power transfer with reactance steering network and reconfi- gurable receivers[J]. IEEE Transactions on Power Electronics, 2020, 35(1): 496-507. [11] Nour Y, Knott A, Petersen L P.High frequency soft switching half bridge series-resonant DC-DC converter utilizing gallium nitride FETs[C]//2017 19th European Conference on Power Electronics and Applications (EPE'17 ECCE Europe), Warsaw, Poland, 2017: 1-7. [12] Trung N K.13.56MHz high power and high effici- ency inverter for dynamic EV charging systems[D]. Tokyo: Shibaura Institute of Technology, 2016. [13] Kessler D J, Kazimierczuk M K.Power losses and efficiency of class-E power amplifier at any duty ratio[J]. IEEE Transactions on Circuits and Systems I-Regular Papers, 2004, 51(9): 1675-1689. [14] Mediano A, Ortega-Gonzalez F J. Class-E amplifiers and applications at MF, HF, and VHF: examples and applications[J]. IEEE Microwave Magazine, 2018, 19(5): 42-53. [15] Hu J.Design of a low-voltage low-power DC-DC HF converter[D]. Cambridge: Massachusetts Institute of Technology, 2008. [16] Rivas J M, Leitermann O, Han Yehui, et al.A very high frequency DC-DC converter based on a Class Φ2 resonant inverter[J]. IEEE Transactions on Power Electronics, 2011, 26(10): 2980-2992. [17] Rivas J M, Han Yehui, Leitermann O, et al.A high- frequency resonant inverter topology with low- voltage stress[J]. IEEE Transactions on Power Electronics, 2008, 23(4): 1759-1771. [18] Glaser J S, Rivas J M.A 500W push-pull DC-DC power converter with a 30MHz switching frequ- ency[C]//2010 Twenty-Fifth Annual IEEE Applied Power Electronics Conference and Exposition (APEC), Palm Springs, USA, 2010: 654-661. [19] 邹学文, 董舟, 周嫄, 等. 超高频DC-DC谐振变换器[J]. 电源学报, 2017, 15(1): 138-145. Zou Xuewen, Dong Zhou, Zhou Yuan, et al.Very high frequency DC-DC resonant converter[J]. Journal of Power Supply, 2017, 15(1): 138-145. [20] Grebennikov A, Sokal N O, Franco M J.Switch mode RF and microwave power amplifiers[M]. Oxford: Elsevier, 2012. [21] Aldhaher S, Yates D C, Mitcheson P D.Load- independent class E/EF inverters and rectifiers for MHz-switching applications[J]. IEEE Transactions on Power Electronics, 2018, 33(10): 8270-8287. [22] 张少腾, 赵晋斌, 吴月宝, 等. 基于自互感调节的无线电能传输用E类逆变器软开关技术研究[J]. 电工技术学报, 2021, 36(21): 4558-4566. Zhang Shaoteng, Zhao Jinbin, Wu Yuebao, et al.Research on soft switching technology of class E inverter based on self mutual-inductance regulation in wireless power transfer[J]. Transactions of China Electrotechnical Society, 2021, 36(21): 4558-4566. [23] Zulinski R E, Grady K J.Load-independent class E power inverters I. theoretical development[J]. IEEE Transactions on Circuits and Systems, 1990, 37(8): 1010-1018. [24] Jiang Yifan, Li Heyuan, Fu Minfan.High-frequency DC/DC converter based on differential load- independent class E inverter[C]//2021 IEEE 1st International Power Electronics and Application Symposium (PEAS), Shanghai, China, 2021: 1-5. [25] Luo Weisen, Wei Xiuqin, Sekiya H, et al.Design of load-independent class-E inverter with MOSFET parasitic capacitances[C]//2019 IEEE 62nd Inter- national Midwest Symposium on Circuits and Systems (MWSCAS), Dallas, USA, 2019: 1-4. [26] Kee S D, Aoki I, Hajimiri A, et al.The class-E/F family of ZVS switching amplifiers[J]. IEEE Transa- ctions on Microwave Theory and Techniques, 2003, 51(6): 1677-1690. [27] Roslaniec L, Jurkov A S, Bastami A A, et al.Design of single-switch inverters for variable resistance/load modulation operation[J]. IEEE Transactions on Power Electronics, 2015, 30(6): 3200-3214. [28] Kaczmarczyk Z.High-efficiency class E, EF2, and E/F3 inverters[J]. IEEE Transactions on Industrial Electronics, 2006, 53(5): 1584-1593. [29] Zhang Lujie, Ngo K.Design methodology of a ZVS class-E inverter with fixed gain[C]//2019 IEEE Energy Conversion Congress and Exposition (ECCE), Baltimore, USA, 2019: 1-7. [30] Obinata N, Luo Weisen, Wei Xiuqin, et al.Analysis of load-independent class-E inverter at any duty ratio[C]//45th Annual Conference of the IEEE Industrial Electronics Society, Lisbon, Portugal, 2019: 1-6. [31] Dahl N J, Ammar A M, Andersen M A E. Identification of ZVS points and bounded low-loss operating regions in a class-D resonant converter[J]. IEEE Transactions on Power Electronics, 2021, 36(8): 9511-9520. [32] Fu Wenchang, Hsieh P H.A 13.56-MHz wireless power transfer transmitter with impedance com- pression network for biomedical applications[C]// 2020 IEEE International Symposium on Circuits and Systems (ISCAS), Seville, Spain, 2020: 1-5. [33] Han Yehui, Leitermann O, Jackson D A, et al.Resistance compression networks for radio-frequency power conversion[J]. IEEE Transactions on Power Electronics, 2007, 22(1): 41-53. [34] Guan Yueshi, Bian Qing, Wang Yijie, et al.Analysis and design of high-frequency converter with resistive matching network and spiral inductor[J]. IEEE Transactions on Power Electronics, 2018, 33(6): 5062-5075. [35] 范兴明, 苏斌华, 唐福鸿, 等. 基于Q值法的T型自动阻抗匹配网络的研究[J]. 电工技术学报, 2022, 37(9): 2275-2283. Fan Xingming, Su Binhua, Tang Hongfu, et al.Research on an automatic impedance matching T- network based on Q-based design method[J]. Transactions of China Electrotechnical Society, 2022, 37(9): 2275-2283. [36] Danilovic M, Ngo K D T, Zhang Zhemin. Com- pression of the load resistance range in constant frequency resonant inverters[C]//2014 IEEE Energy Conversion Congress and Exposition (ECCE), Pittsburgh, USA, 2014: 1-8. [37] Chung E, Ha J.Resonant network design methodo- logy based on two-port network analysis considering load impedance variation[C]//2019 IEEE Energy Conversion Congress and Exposition (ECCE), Baltimore, USA, 2019: 1-6. [38] Bastami A, Jurkov A, Gould P, et al.Dynamic matching system for radio-frequency plasma gener- ation[J]. IEEE Transactions on Power Electronics, 2018, 33(3): 1940-1951. [39] Liu Shuangke, Liu Ming, Han Songyang, et al.Tunable class E2 DC-DC converter with high effici- ency and stable output power for 6.78MHz wireless power transfer[J]. IEEE Transactions on Power Electronics, 2018, 33(8): 6877-6886. [40] 吴月宝, 赵晋斌, 张少腾, 等. 基于径向基神经网络的多负载无线电能传输系统自适应阻抗匹配方法[J]. 电工技术学报, 2021, 36(19): 3969-3977. Wu Yuebao, Zhao Jinbin, Zhang Shaoteng, et al.An adaptive impedance matching method based on radial basis function neural network in multi-load wireless power transfer systems[J]. Transactions of China Electrotechnical Society, 2021, 36(19): 3969-3977. [41] Choi J, Xu Jiale, Makhoul R, et al.Implementing an impedance compression network to compensate for misalignments in a wireless power transfer system[J]. IEEE Transactions on Power Electronics, 2019, 34(5): 4173-4184. [42] Braun W D, Perreault D J.A high-frequency inverter for variable-load operation[J]. IEEE Journal of Emerging & Selected Topics in Power Electronics, 2019, 7(2): 706-721. [43] Liu Chang, Guan Yueshi, Wang Yijie, et al.A high performance high frequency inverter architecture with wide load range[C]//2021 IEEE Energy Conversion Congress and Exposition (ECCE), Vancouver, Canada, 2022: 1-7. |
|
|
|