|
|
Motion Characteristics of Free Metal Particles in GIS under Sinusoidal Vibration |
Li Jie1, Li Xiaoang1, Lü Yufang1, Wu Zhicheng1, Zhao Ke2, Zhang Qiaogen1 |
1. State Key Laboratory of Electrical Insulation and Power Equipment Xi'an Jiaotong University Xi'an 710049 China; 2. State Grid Jiangsu Electric Power Research Institute Nanjing 210000 China |
|
|
Abstract Free metal particles are one of the main threats to the reliability of gas insulated metal-enclosed switchgear (GIS) insulation. They have the character of latent and random. The vibration of GIS can excite particles to taken off and induced insulation breakdown, but related research was rarely reported. This paper established a simulation calculation model for the charging, force, and motion of free metal particles under the power frequency voltage superimposed sinusoidal vibration in UHV GIS. Researching the influence of voltage and vibration parameters on the particle motion characteristics and obtained particles' acoustic flight patterns under different conditions. The results show that under the vibration of the shell acceleration at the initial moment. The take-off electric field strength of particles gradually decreases with the increase of the amplitude. The effect of the particle radius on the take-off electric field strength gradually decreases with the amplitude's growth. During the movement, the maximum flight height of particles between two adjacent collisions is related to the collision recovery speed and the instantaneous voltage phase of the collision. And the maximum flight height is positively related to particle flight time. Under the power frequency voltage superimposed sinusoidal vibration, the acoustic flight pattern shows an evident triangular pulse with a higher recognition when the voltage amplitude is low. The acoustic flight pattern is mountain-shaped, significantly different from the band flight pattern under the power frequency voltage application.
|
Received: 27 October 2020
|
|
|
|
|
[1] 邱毓昌. GIS 设备及其绝缘技术[M]. 北京: 水利电力出版社, 1994. [2] 张连根, 路士杰, 李成榕, 等. 气体绝缘组合电器中微米量级金属粉尘运动和放电特征[J]. 电工技术学报, 2020, 35(2): 234-242. Zhang Liangen, Lu Shijie, Li Chengrong, et al.Movement and discharge characteristics of mocron-scale metal dust in gas insulated switchgear[J]. Transactions of China Electrotechnical Society, 2020, 35(2): 234-242. [3] 庄丞, 曾建斌, 袁传镇. 表面异物对252kV气体绝缘组合电器盆式绝缘子绝缘性能的影响[J]. 电工技术学报, 2019, 34(20): 42-50. Zhuang Cheng, Zeng Jianbing, Yuan Chuanzhen.Effect of surface foreign matters on the insulation property of 252kV gas insulated switchgear basin insulators[J]. Transactions of China Electrotechnical Society, 2019, 34(20): 42-50. [4] 高克利, 颜湘莲, 刘焱, 等. 环保气体绝缘管道技术研究进展[J]. 电工技术学报, 2020, 35(1):3-20. Gao Keli, Yan Xianglian, Liu Yan, et al.Progress of technology for environment-friendly gas insulated transmission line[J]. Transactions of China Electrotechnical Society, 2020, 35(1): 3-20. [5] 罗毅, 唐炬, 潘成, 等. 直流GIS/GIL盆式绝缘子表面电荷主导积聚方式的转变机理[J]. 电工技术学报, 2019, 34(23): 185-194. Luo Yi, Tang Ju, Pan Cheng, et al.The transition mechanism of surface charge accumulation dominating way in DC GIS/GIL[J]. Transactions of China Electrotechnical Society, 2019, 34(23): 185-194. [6] 张连根, 路士杰, 李成榕, 等. GIS中线形和球形金属微粒的运动行为和危害性[J]. 电工技术学报, 2019, 34(20): 51-59. Zhang Liangen, Lu Shijie, Li Chengrong, et al.Motor behavior and hazard of spherical and linear particle in gas insulated switchgear[J]. Transactions of China Electrotechnical Society, 2019, 34(20): 51-59. [7] 孙秋芹, 罗宸江, 王峰, 等. 直流GIL 导体表面金属颗粒跳跃运动特性研究[J]. 电工技术学报, 2018, 33(22): 5206-5216. Sun Qiuqin, Luo Chenjiang, Wang Feng, et al.Jumping characteristics of metal particle onthe surface of DC gas insulated transmission line conductor[J]. Transactions of China Electrotechnical Society, 2018, 33(22): 5206-5216. [8] 李庆民, 王健, 李伯涛, 等. GIS/GIL 中金属微粒污染问题研究进展[J]. 高电压技术, 2016, 42(3): 849-861. Li Qingmin, Wang Jian, Li Botao, et al.Review on metal particle contamination in GIS/GIL[J]. High Voltage Engineering, 2016, 42(3): 849-861. [9] Diessner A, Trump J G . Free conducting particles in a coaxial compressed-gas-insulated system[J]. IEEE Transactions on Power Apparatus & Systems, 1970, PAS-89(8):1970-1978. [10] 贾江波, 张乔根, 师晓岩, 等. 交流电压下绝缘子附近导电微粒运动特性[J]. 电工技术学报, 2008, 23(5): 7-11. Jia Jiangbo, Zhang Qiaogen, Shi Xiaoyan, et al.Motion of conducting particle near PTFE spacer under AC voltage[J]. Transactions of China Electro-technical Society, 2008, 23(5): 7-11. [11] 贾江波, 陶风波, 杨兰均, 等. GIS 中不均匀直流电场下球状自由导电微粒运动分析[J]. 中国电机工程学报, 2006, 26(8): 106-111. Jia Jiangbo, Tao Fengbo, Yang Lanjun, et al.Motion analysis of spherical free conducting particle in non- uniform electric field of GIS under DC voltage[J]. Proceedings of the CSEE, 2006, 26(8): 106-111. [12] 贾江波, 查玮, 杨连殿, 等. 直流电压下绝缘子附近球形导电微粒运动起始电压研究[J]. 西安交通大学学报, 2006, 40(6): 699-703. Jia Jiangbo, Zha Wei, Yang Liandian, et al.Threshold voltage of spherical conducting particle motion near spacer in inhomogeneous electric field[J]. Journal of Xi'an Jiaotong University, 2006, 40(6): 699-703. [13] Wu Zhicheng, Zhang Qiaogen, Song Jiajie, et al.Improved method for acoustic identification of free conductive particle defects in GIL[J]. IEEE Transactions on Power Delivery, 2018, 34(4): 1317-1323. [14] 王健, 李庆民, 李伯涛, 等. 考虑非弹性随机碰撞与SF6/N2混合气体影响的直流GIL球形金属微粒运动行为研究[J]. 中国电机工程学报, 2015, 35(15): 3971-3978. Wang Jian, Li Qingmin, Li Botao, et al.Motion analysis of spherical conducting particlein DC GIL considering the influence of inelastic random collisions and SF6/N2 gaseous mixture[J]. Proceedings of the CSEE, 2015, 35(15): 3971-3978. [15] Sakai K, Abella D L, Khan Y, et al.Theoretical and experimental studies for spherical free-conducting particle behavior between nonparallel plane electrodes with AC voltages in air[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2003, 10(3): 404-417. [16] Sakai K, Tsuru S, Abella D L, et al.Conducting particle motion and particle-initiated breakdown in DC electric field between diverging conducting plates in atmospheric air[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 1999, 6(1): 122-130. [17] Lundgaard L E.Particles in GIS characterization from acoustic signatures[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2001, 8(6): 1064-1074. [18] Lundgaard L E, Runde M.Acoustic diagnosis of gas insulated substations: a theoretical and experimental basis[J]. IEEE Transactions on Power Delivery, 1990, 5(4): 1751-1759. [19] Lundgaard L E, Tangen G .Acoustic diagnoses of GIS; field experience and development of expert system[J]. IEEE Transactions on Power Delivery, 1992, 7(1): 287-294. [20] Cookson A H, Boln P C, Doepken H C, et al. Recent research in the united states on the effect of particle contamination reducing the breakdown voltage in compressed gas-insulated systems[J]. IEEE Transactions on Power Apparatus and Systems, 1972, PAS-91(4): 1329-1328. [21] Cookson A H, Farish O. Particle-initiated breakdown between coaxial electrodes in compressed SF6[J]. IEEE Transactions on Power Apparatus and Systems, 1973, PAS-92(3): 871-876. [22] Schlemper H D, Feser K.Characterisation of moving particles in GIS by acoustic and electric partial discharge detection[C]//10th International Symposium on HV Engineering, Montreal, 1997, 2: 13-18. [23] 蒋玲, 曲全磊, 王志惠, 等. 高温差工况下长母线GIS设备振动特性研究[J]. 高压电器, 2019, 55(11): 144-151. Jiang Ling, Qu Quanlei, Wang Zhihui, et al.Study on vibration characteristics of long-busbar GIS equipment in large temperature difference conditions[J]. High Voltage Apparatus, 2019, 55(11): 144-151. [24] 丁登伟, 何良, 龙伟, 等. GIS设备运行状态下振动机理及检测诊断技术研究[J]. 高压电器, 2019, 368(11): 101-107. Ding Dengwei, He Liang, Long Wei, et al.Analysis on vibration mechanisms and detection diagnosis technology of GIS in operating condition[J]. High Voltage Apparatus, 2019, 368(11): 101-107. [25] 刘媛, 杨景刚, 贾勇勇, 等. 基于振动原理的GIS隔离开关触头接触状态检测技术[J]. 高电压技术, 2019, 45(5): 1591-1599. Liu Yuan, Yang Jinggang, Jia Yongyong, et al.Connection state diagnosis method of GIS disconnector based on mechanical vibration[J]. High Voltage Engineering, 2019, 45(5): 1591-1599. [26] Masanori H, Masanori A.A method for prediction of gaseous discharge threshold voltage in the presence of a conducting particle[J]. Journal of Electrostatics, 1977, 2(3): 223-239. [27] Lebedev N N.Force acting on a conducting sphere in the field of a parallel plane condenser[J]. Soviet Journal Physics-Technical Physics, 1962, 7: 268-270. [28] 董连政. 恢复系数两种定义等价性的证明[J]. 吉林师范大学学报(自然科学版), 2004, 25(2): 74-75. Dong Lianzheng.Prove the equivalence of two definitions of restitution coefficient[J]. Jilin Normal University Journal (Natural Science Edition), 2004, 25(2): 74-75. [29] 吴百诗. 大学物理(修订本)[M]. 西安: 西安交通大学出版社, 2000. [30] Runde M, Aurud T.Risk assessment basis of moving particles in gas insulated substations[C]// Proceeding of 1996 Transmission and Distribution Conference and Exposition, Los Angeles, USA, 1996: 181-188. [31] Schlemper H D, Feser K.Estimation of mass and length of moving particles in GIS by combined acoustical and electrical PD detection[C]//Conference on Electrical Insulation & Dielectric Phenomena-ceidp, Millbrae, USA, 1996, 1: 90-93. |
|
|
|