|
|
Adsorption Property of SO2 Gas on TiO2-Doped Graphene |
Gui Yingang1, Xu Wenlong1, Zhang Xiaoxing2, Xu Lingna1 |
1. College of Engineering and technology Southwest University Chongqing 400700 China; 2. School of Electrical and electronic Engineering Hubei University of technology Wuhan 430068 China |
|
|
Abstract The SO2 component produced during GIS discharge is closely related to the type and severity of discharge fault. The research on SO2 gas sensor with excellent gas sensing response ability can provide a detection basis for online monitoring GIS discharge fault. In this paper, based on density functional theory (DFT) first-principles calculation, the doping structure of different amounts of TiO2 doping on graphene surface is optimized to obtain the optimal doping structure. Secondly, SO2 gas molecules are close to the intrinsic graphene in different approaching orientations, and the adsorption structure, adsorption energy, and charge transfer of SO2 gas molecules on the surface of TiO2 graphene were calculated. Finally, the interaction mechanism between SO2 and TiO2 graphene structure was obtained by analyzing the density of states (DOS) and partial density of states (PDOS). It is found that the two TiO2 modification shows the optimal doping structure, which shows good adsorption performance for one or more SO2 molecules, and it is chemisorption. Therefore, TiO2-doped graphene gas sensor has a good application prospect in GIS discharge decomposition component detection and insulation diagnosis.
|
Received: 18 December 2020
|
|
|
|
|
[1] 唐念, 乔胜亚, 李丽, 等. HF 和 H2S 作为气体绝缘组合电器绝缘缺陷诊断特征气体的有效性[J]. 电工技术学报, 2017, 32(19): 202-211. Tang Nian, Qiao Shengya, Li Li, et al.Validity of HF and H2S as target gases of insulation monitoring in gas insulated switchgear[J]. Transactions of China Electrotechnical Society, 2017, 32(19): 202-211. [2] Zhang Xiaoxing, Gui Yingang, Xiao Hanyan, et al.Analysis of adsorption properties of typical partial discharge gases on Ni-SWCNTs using density functional theory[J]. Applied Surface Science, 2016, 379: 47-54. [3] 赵明月, 林涛, 颜湘莲, 等. 基于氧同位素示踪法的电晕放电中 H2O 和 O2 对 SF6 分解气体形成的影响[J]. 电工技术学报, 2018, 33(20): 4722-4728. Zhao Mingyue, Lin Tao, Yan Xianglian, et al.Influence of trace H2O and O2 on SF6 decomposition characteristics under corona discharge based on oxygen isotope tracer[J]. Transactions of China Electrotechnical Society, 2018, 33(20): 4722-4728. [4] Li Xu, Tang Chao, Wang Jingna, et al.Analysis and mechanism of adsorption of naphthenic mineral oil, water, formic acid, carbon dioxide, and methane on meta-aramid insulation paper[J]. Journal of Materials Science, 2019, 54(11): 8556-8570. [5] 张晓星, 董星辰, 陈秦川. 锐钛矿型 (101) 晶面吸附 SF6局部放电分解组分的气敏机理分析[J]. 电工技术学报, 2017, 32(3): 200-209. Zhang Xiaoxing, Dong Xingchen, Chen Qinchuan.Gas sensing mechaism analysis of SF6 decomposed gases adsorption on anatase (101) surface under partial discharge[J]. Transactions of China Electrotechnical Society, 2017, 32(3): 200-209. [6] 张晓星, 田双双, 肖淞, 等. SF6替代气体研究现状综述[J]. 电工技术学报, 2018, 33(12): 2883-2893. Zhang Xiaoxing, Tian Shuangshuang, Xiao Song, et al.A review study of SF6 substitute gases[J]. Transactions of China Electrotechnical Society, 2018, 33(12): 2883-2893. [7] Zhou Qu, Zeng Wen, Chen Weigen, et al.High sensitive and low-concentration sulfur dioxide (SO2) gas sensor application of heterostructure NiO-ZnO nanodisks[J]. Sensors and Actuators B-Chemical, 2019, 298: 126870. [8] Yang Aijun, Wang Dawei, Wang Xiaohua, et al.Recent advances in phosphorene as a sensing material[J]. Nano Today, 2018, 20: 13-32. [9] Zhang Xiaoxing, Yu Lei, Wu Xiaoqing, et al.Experimental sensing and density functional theory study of H2S and SOF2 adsorption on Au-modified graphene[J]. Advanced Science, 2015, 2(11): 1500101. [10] 庞思远, 刘希喆. 石墨烯在电气领域的研究与应用综述[J]. 电工技术学报, 2018, 33(8): 1705-1722. Pang Siyuan, Liu Xizhe.Review on research and application of graphene in the electrical field[J]. Transactions of China Electrotechnical Society, 2018, 33(8): 1705-1722. [11] Shao Yuyan, Wang Jun, Wu Hong, et al.Graphene based electrochemical sensors and biosensors: a review[J]. Electroanalysis, 2010, 22(10): 1027-1036. [12] Li Bingyu, Shi Xinhao, Gu Wei, et al.Graphene based electrochemical biosensor for label-free measurement of the activity and inhibition of protein tyrosine kinase[J]. Analyst, 2013, 138(23): 7212-7217. [13] Gui Yingang, Peng Xiao, Liu Kai, et al.Adsorption of C2H2, CH4 and CO on Mn-doped graphene: Atomic, electronic, and gas-sensing properties[J]. Physica E-Low-Dimensional Systems & Nanostructures, 2020, 119: 113959. [14] Zhang Yonghui, Chen Yabin, Zhou Kaile, et al.Improving gas sensing properties of graphene by introducing dopants and defects: a first-principles study[J]. Nanotechnology, 2009, 20(18): 185504. [15] Gui Yingang, Hao Zeshen, Li Xin, et al.Gas sensing of graphene and graphene oxide nanoplatelets to ClO(2)and its decomposed species[J]. Superlattices and Microstructures, 2019, 135: 106248. [16] He Xin, Gui Yingang, Liu Kai, et al.Comparison of sensing and electronic properties of C2H2 on different transition metal oxide nanoparticles (Fe2O3, NiO, TiO2) modified BNNT (10,0)[J]. Applied Surface Science, 2020, 521: 146463. [17] Nghia Manh N, Yen Hai N, Hong Ngoc P, et al.Investigation of origin optical properties of TiO2/graphene nanohybrids[J]. Materials Letters, 2020, 276: 128042. [18] Tian Xiaoyu, Wang Qingyao, Zhao Qianqian, et al.Silar deposition of CuO nanosheets on the TiO2 nanotube arrays for the high performance solar cells and photocatalysts[J]. Separation and Purification Technology, 2019, 209: 368-374. [19] Tang Yongbing, Lee Chun S, Xu Jun, et al.Incorporation of graphenes in nanostructured TiO2 films via molecular grafting for dye-sensitized solar cell application[J]. Acs Nano, 2010, 4(6): 3482-3488. [20] Perdew J P, Burke K, Ernzerhof M, et al.Generalized gradient approximation made simple[J]. Physical Review Letters, 1997, 78(7): 1396-1396. [21] Chen Wenlong, Gui Yingang, Li Tao, et al.Gas-sensing properties and mechanism of Pd-GaNNTs for air decomposition products in ring main unit[J]. Applied Surface Science, 2020, 531: 147293. [22] Wei Huanglin, Gui Yingang, Kang Jian, et al.A DFT study on the adsorption of H2S and SO2 on Ni doped MoS2 monolayer[J]. Nanomaterials, 2018, 8(9): 8090646. [23] He Xin, Gui Yingang, Xie Jufang, et al.A DFT study of dissolved gas (C2H2, H2, CH4) detection in oil on CuO-modified BNNT[J]. Applied Surface Science, 2020, 500: 144030. [24] Zheng Wei, Tang Chao, Xie Jufang, et al.Micro-scale effects of nano-SiO2 modification with silane coupling agents on the cellulose/nano-SiO2 interface[J]. Nanotechnology, 2019, 30(44): 1361-6528. [25] Zhang Jitao, Zhu Weiwei, Chen Dongyu, et al.Effects of remanent magnetization on dynamic magnetomech-anical and magnetic-sensing characteristics in bi-layer multiferroics[J]. European Physical Journal-Applied Physics, 2019, 85(2): 180168. [26] Zhang Jitao, Chen Dongyu, Filippov D A, et al.Theory of tunable magnetoelectric inductors in ferrite-piezoelectriclayered composite[J]. Journal of Physics D-Applied Physics, 2019, 52(16): 1361-6463. [27] Grimme S.Semiempirical GGA-type density functional constructed with a long-range dispersion correction[J]. Journal of Computational Chemistry, 2006, 27(15): 1787-1799. [28] Cui Hao, Chen Dachang, Zhang Ying, et al.Dissolved gas analysis in transformer oil using Pd catalyst decorated MoSe2 monolayer: a first-principles theory[J]. Sustainable Materials and Technologies, 2019, 20: e00094. [29] Cui Hao, Zhang Guozhi, Zhang Xiaoxing, et al.Rh-doped MoSe2 as a toxic gas scavenger: a first-principles study[J]. Nanoscale Advances, 2019, 1(2): 772-780. [30] Gui Yingang, Li Wenjun, He Xin, et al.Adsorption properties of pristine and Co-doped TiO2(101) toward dissolved gas analysis in transformer oil[J]. Applied Surface Science, 2020, 507: 145163. [31] Guerra C F, Handgraaf J W, Baerends E J, et al.Voronoi deformation density (VDD) charges: assessment of the mulliken, bader, hirshfeld, weinhold, and VDD methods for charge analysis[J]. Journal of Computational Chemistry, 2004, 25(2): 189-210. [32] Farhangi N, Ayissi S, Charpentier P A, et al.Fe doped TiO2-graphene nanostructures: synthesis, DFT modeling and photocatalysis[J]. Nanotechnology, 2014, 25(30): 305601. |
|
|
|