|
|
Experimental Study on Substrate Compatibility of SF6 and SF6 Fault-Decomposing Gases with Partial Discharge Flexible UHF Antenna Sensors |
Zhang Guozhi1,2,3,4, Hu Xukun1,2, Deng Guangyu1,2, Chen Kang1,2, Zhang Xiaoxing1,2,5 |
1. Hubei Engineering Research Center for Safety Monitoring of New Energy and Power Grid Equipment Hubei University of Technology Wuhan 430068 China; 2. School of Electrical and Electronic Engineering Hubei University of Technology Wuhan 430068 China; 3. State Grid Electric Power Research Institute Wuhan NARI Co. Ltd Wuhan 430074 China; 4. School of Power and Mechanical Engineering Wuhan University Wuhan 430072 China; 5. Xiangyang Industrial Institute of Hubei University of Technology Xiangyang 441100 China |
|
|
Abstract At present, rigid base ultra high frequency (UHF) antenna sensors are widely used for the detection of partial discharge (PD) from insulation defects in gas-insulated switchgear (GIS) in substations, but there are problems with rigid base UHF antenna sensors such as destruction of the internal electric field distribution of the equipment and complex installation. The flexible substrate UHF antenna sensor can effectively avoid the above problems. However, it is not clear whether the flexible substrate of the built-in flexible UHF antenna sensor is compatible with SF6 and SF6 fault decomposition gas, and which flexible substrate of the built-in flexible UHF antenna sensor is more compatible with SF6 and SF6 fault decomposition gas. Therefore, this paper investigates the compatibility of SF6 and SF6 fault decomposition gas with three common PD flexible UHF antenna sensor substrates: polyimide (PI), polyethylene terephthalate (PET) and polydimethylsiloxane (PDMS). By building an experimental platform for the compatibility of SF6 gas and SF6 fault decomposition gas with the substrate of PD flexible UHF antenna sensor, this paper carried out an experimental study on the compatibility of various commonly-used PD flexible UHF antenna sensor substrate materials with SF6 and SF6 fault decomposition gas combined with the actual operating temperature range of GIS. Fourier transform infrared spectrometer (FTIR) and gas chromatography-mass spectrometry (GC-MS) were used to analyze the changes of gas composition before and after the experiments. And scanning electron microscope (SEM) and X-ray photoelectron spectroscopy (XPS) were used to analyze the changes in the surface and elements of the PD flexible UHF antenna sensor substrate before and after the experiments. The results are as follows: first, according to the results of FTIR and GC-MS tests, the pure SF6 gas doesn’t react with the three PD flexible UHF antenna sensor substrates. However, the three PD flexible UHF antenna sensor substrates do react with SOF2 in the SF6 fault decomposition gas, among which the PI material reacts most strongly with SOF2. Second, the SEM and XPS tests show that in the PET material, the absorption peaks of C=O and O—C—O bonds in the pure SF6 environment at 110℃ are higher than those of C=O and O—C—O bonds in the pure SF6 environment at 30℃ and 70℃, while C=O and O—C—O bonds are also detected in the PET material under the vacuum condition at 110℃; all three PD flexible UHF antenna sensor substrates generates fluorinated compounds on the surface under the SF6 fault decomposition gas environment, but on the surface of PDMS material, the peak intensities of Metal—F and C—F bonds were much lower than those of Metal—F and C—F bonds on the surface of PI and PET materials. From the above results, it can be concluded that all three commonly used PD flexible UHF antenna sensor substrate materials, PI, PET and PDMS, do not affect the SF6 gas composition; the commonly used PI flexible UHF antenna sensor substrate react with SOF2 in SF6 fault decomposition gas, resulting in a significant reduction of SOF2 content; PET is be slightly oxidized under pure SF6 maximum allowable operating temperature of 110°C. Two PD flexible UHF antenna sensor (PI and PET) generate more fluorinated compounds. Therefore, PDMS substrate should be adopted in the development of flexible UHF antenna sensor. The results of this research provide basic reference data for the design and application of GIS flexible built-in UHF antenna sensors.
|
Received: 23 December 2022
|
|
|
|
|
[1] 周倩, 柯锟, 张晓星, 等. 基于SF6混合气体绝缘性能的设备补气策略研究[J]. 电力工程技术, 2021, 40(4): 175-181. Zhou Qian, Ke Kun, Zhang Xiaoxing, et al.Air supply strategy of equipment based on SF6 mixed gas insulation performance[J]. Electric Power Engineering Technology, 2021, 40(4): 175-181. [2] 卓然, 柯锟, 张跃, 等. 准均匀电场下C5F10O/干燥空气与C5F10O/N2的绝缘特性[J]. 电力工程技术, 2021, 40(3): 159-165. Zhuo Ran, Ke Kun, Zhang Yue, et al.Insulation characteristics of C5F10O/Air and C5F10O/N2 under quasi-uniform electric field[J]. Electric Power Engineering Technology, 2021, 40(3): 159-165. [3] 宋辉, 代杰杰, 李喆, 等. 运行条件下GIS局部放电严重程度评估方法[J]. 中国电机工程学报, 2019, 39(4): 1231-1241. Song Hui, Dai Jiejie, Li Zhe, et al.An assessment method of partial discharge severity for GIS in service[J]. Proceedings of the CSEE, 2019, 39(4): 1231-1241. [4] 张晓星, 孟凡生, 任江波, 等. 硼掺杂单壁碳纳米管检测SF6气体局部放电仿真[J]. 高电压技术, 2011, 37(7): 1689-1694. Zhang Xiaoxing, Meng Fansheng, Ren Jiangbo, et al.Simulation on the B-doped single-walled carbon nanotubes detecting the partial discharge of SF6[J]. High Voltage Engineering, 2011, 37(7): 1689-1694. [5] Li Junhao, Han Xutao, Liu Zehui, et al.A novel GIS partial discharge detection sensor with integrated optical and UHF methods[J]. IEEE Transactions on Power Delivery, 2018, 33(4): 2047-2049. [6] 宋思蒙, 钱勇, 王辉, 等. 基于方向梯度直方图属性空间的局部放电模式识别改进算法[J]. 电工技术学报, 2021, 36(10): 2153-2160. Song Simeng, Qian Yong, Wang Hui, et al.Improved algorithm for partial discharge pattern recognition based on histogram of oriented gradient attribute spacefull text replacement[J]. Transactions of China Electrotechnical Society, 2021, 36(10): 2153-2160. [7] 张晓星, 张戬, 肖淞. 大型变压器外置式特高频局部放电传感器设计[J]. 高电压技术, 2019, 45(2): 499-504. Zhang Xiaoxing, Zhang Jian, Xiao Song.Design of external ultra-high frequency partial discharge sensor for large transformer[J]. High Voltage Engineering, 2019, 45(2): 499-504. [8] 覃剑, 王昌长, 邵伟民. 特高频在电力设备局部放电在线监测中的应用[J]. 电网技术, 1997, 21(6): 33-36. Qin Jian, Wang Changchang, Shao Weimin.Applying UHF to partial discharge on-line monitoring of electric power apparatus[J]. Power System Technology, 1997, 21(6): 33-36. [9] 唐炬, 魏钢, 孙才新, 等. GIS局部放电检测用超宽频带振子天线传感器研究[J]. 高电压技术, 2004, 30(3): 29-31, 42. Tang Ju, Wei Gang, Sun Caixin, et al.Research on the dipole antenna sensor with broandband for partial discharge detection in GIS[J]. High Voltage Engineering, 2004, 30(3): 29-31, 42. [10] 王亮, 郑书生, 李成榕, 等. GIS浇注孔传播内部局部放电UHF电磁波的特性[J]. 电网技术, 2014, 38(1): 241-247. Wang Liang, Zheng Shusheng, Li Chengrong, et al.Distribution of electric field strength and spectral characteristic of UHF signal of partial discharge inside GIS at resin sprue of metal ring[J]. Power System Technology, 2014, 38(1): 241-247. [11] 卢启付, 郑书生, 李兴旺, 等. GIS金属法兰孔特高频信号传播特性研究与外置式发射天线开发[J]. 电网技术, 2013, 37(8): 2303-2309. Lu Qifu, Zheng Shusheng, Li Xingwang, et al.Study on propagation characteristics of UHF signal via hole of GIS mental flange and development of external radiating antenna[J]. Power System Technology, 2013, 37(8): 2303-2309. [12] 谭巧, 唐炬, 曾福平. 检测气体绝缘组合电器局部放电的四频段微带单极子特高频天线设计[J]. 电工技术学报, 2016, 31(10): 127-135, 144. Tan Qiao, Tang Ju, Zeng Fuping.Design of fourfold-band micro-strip monopole antenna for partial discharge detection in gas insulated switchgear[J]. Transactions of China Electrotechnical Society, 2016, 31(10): 127-135, 144. [13] 鲍连伟, 李剑, 薛武, 等. 采用遗传算法优化局部放电超高频Hilbert分形天线[J]. 高电压技术, 2015, 41(12): 3959-3966. Bao Lianwei, Li Jian, Xue Wu, et al.Application of genetic algorithms in optimization of partial discharge ultra-high frequency fractal Hilbert antenna[J]. High Voltage Engineering, 2015, 41(12): 3959-3966. [14] 周文俊, 刘宇舜, 李鹏飞, 等. 基于特高频法检测电气设备局部放电的改进Vivaldi天线[J]. 电工技术学报, 2017, 32(12): 259-267. Zhou Wenjun, Liu Yushun, Li Pengfei, et al.Modified Vivaldi antenna applied to detect partial discharge in electrical equipment based on ultra-high frequency method[J]. Transactions of China Electrotechnical Society, 2017, 32(12): 259-267. [15] 汲胜昌, 王圆圆, 李军浩, 等. GIS局部放电检测用特高频天线研究现状及发展[J]. 高压电器, 2015, 51(4): 163-172, 177. Ji Shengchang, Wang Yuanyuan, Li Junhao, et al.Review of UHF antenna for detecting partial discharge in GIS[J]. High Voltage Apparatus, 2015, 51(4): 163-172, 177. [16] 张国治, 陈康, 李晓涵, 等. GIS PD检测柔性内置小型化阿基米德螺旋天线传感器[J]. 高电压技术, 2022, 48(6): 2244-2254. Zhang Guozhi, Chen Kang, Li Xiaohan, et al.Flexible built-in miniature Archimedes spiral antenna sensor for PD detection in GIS[J]. High Voltage Engineering, 2022, 48(6): 2244-2254. [17] 张国治, 韩景琦, 刘健犇, 等. GIS局部放电检测天线本体和巴伦共面柔性小型化特高频天线传感器研究[J]. 电工技术学报, 2023, 38(4): 1064-1075. Zhang Guozhi, Han Jingqi, Liu Jianben, et al.Research on gas insulated switchgear PD detection antenna body and balun coplanar flexible miniaturized ultra-high frequency antenna sensor[J]. Transactions of China Electrotechnical Society, 2023, 38(4): 1064-1075. [18] 张国治, 张硕, 张晓星, 等. 新型GIS局部放电柔性内置阿基米德螺旋天线研究[J/OL]. 高压电器, 2022: 1-10. https://kns.cnki.net/kcms/detail/61.1127. TM.20220130.1459.002.html. Zhang Guozhi, Zhang Shuo, Zhang Xiaoxing, et al. Research on a new type of GIS partial discharge flexible built-in Archimedes spiral antenna[J/OL]. High Voltage Apparatus, 2022: 1-10. https://kns. cnki.net/kcms/detail/61.1127.TM.20220130.1459.002. html. [19] Zhang Hanting, Zhang Guozhi, Zhang Xiaoxing, et al.PD flexible built-in high-sensitivity elliptical monopole antenna sensor[J]. Sensors, 2022, 22(13): 4982. [20] Zhang Guozhi, Tian Jinwen, Zhang Xiaoxing, et al.A flexible planarized biconical antenna for partial discharge detection in gas-insulated switchgear[J]. IEEE Antennas and Wireless Propagation Letters, 2022, 21(12): 2432-2436. [21] 程林, 李亚龙, 张晓星, 等. 三元乙丙橡胶与C5F10O/CO2混合气体的相容性研究[J]. 高电压技术, 2021, 47(5): 1771-1779. Cheng Lin, Li Yalong, Zhang Xiaoxing, et al.Study on the compatibility of EPDM and C5F10O/CO2 gas mixture[J]. High Voltage Engineering, 2021, 47(5): 1771-1779. [22] 李涵, 郑哲宇, 袁瑞君, 等. 气体绝缘设备中气固材料的相容性[J]. 电工技术学报, 2020, 35(11): 2460-2468. Li Han, Zheng Zheyu, Yuan Ruijun, et al.Compatibility between gas and solid materials in gas insulated equipment[J]. Transactions of China Electrotechnical Society, 2020, 35(11): 2460-2468. [23] 兰佳琪, 田双双, 李晓涵, 等. C6F12O/N2混合气体与密封材料丁腈橡胶的相容性研究[J]. 电工技术学报, 2022, 37(5): 1285-1293, 1304. Lan Jiaqi, Tian Shuangshuang, Li Xiaohan, et al.Compatibility between C6F12O/N2 gas mixture and sealing material nitrile butadiene rubber[J]. Transactions of China Electrotechnical Society, 2022, 37(5): 1285-1293, 1304. [24] 郑哲宇, 李涵, 周文俊, 等. 环保绝缘气体C3F7CN与密封材料三元乙丙橡胶的相容性研究[J]. 高电压技术, 2020, 46(1): 335-341. Zheng Zheyu, Li Han, Zhou Wenjun, et al.Compatibility of eco-friendly insulating medium C3F7CN and sealing material EPDM[J]. High Voltage Engineering, 2020, 46(1): 335-341. [25] 袁瑞君, 李涵, 郑哲宇, 等. 气体绝缘输电线路用C3F7CN/CO2混合气体与环氧树脂相容性试验[J]. 电工技术学报, 2020, 35(1): 70-79. Yuan Ruijun, Li Han, Zheng Zheyu, et al.Experiment on the compatibility between C3F7CN/CO2 gas mixture and epoxy resin used in gas insulated transmission line[J]. Transactions of China Electrotechnical Society, 2020, 35(1): 70-79. [26] 吴鹏, 叶凡超, 李祎, 等. C4F7N/CO2/O2与三元乙丙橡胶的相容性及相互作用机理研究[J]. 电工技术学报, 2022, 37(13): 3393-3403. Wu Peng, Ye Fanchao, Li Yi, et al.Compatibility and interaction mechanism between C4F7N/CO2/O2 and EPDM[J]. Transactions of China Electrotechnical Society, 2022, 37(13): 3393-3403. [27] 李祎, 张晓星, 傅明利, 等. 环保绝缘气体C4F7N研究及应用进展Ⅱ:相容性、安全性及设备研发[J]. 电工技术学报, 2021, 36(21): 4567-4579. Li Yi, Zhang Xiaoxing, Fu Mingli, et al.Research and application progress of eco-friendly gas insulating medium C4F7N, part Ⅱ: material compatibility, safety and equipment development[J]. Transactions of China Electrotechnical Society, 2021, 36(21): 4567-4579. [28] Trajkovikj J, Zürcher J F, Skrivervik A K.PDMS, a robust casing for flexible W-BAN antennas[EurAAP corner][J]. IEEE Antennas and Propagation Magazine, 2013, 55(5): 287-297. [29] Lin C P, Chang C H, Cheng Y T, et al.Development of a flexible SU-8/PDMS-based antenna[J]. IEEE Antennas and Wireless Propagation Letters, 2011, 10: 1108-1111. [30] 张晓星, 袁子安, 田双双, 等. C6F12O/N2混合气体与环氧树脂相容性研究[J]. 高压电器, 2021, 57(3): 97-103. Zhang Xiaoxing, Yuan Zian, Tian Shuangshuang, et al.Study on compatibility of C6F12O/N2 gas mixture with epoxy resin[J]. High Voltage Apparatus, 2021, 57(3): 97-103. [31] 国家质量监督检验检疫总局, 中国国家标准化管理委员会. 高压交流开关设备和控制设备标准的共用技术要求: GB/T 11022—2020[S]. 北京: 中国标准出版社, 2021. [32] 国家能源局. 气体绝缘金属封闭开关设备技术条件: DL/T 617—2019[S]. 北京: 中国电力出版社, 2020. [33] 袁瑞君. 环保绝缘气体C4F7N/CO2与环氧树脂的相容性研究[D]. 武汉: 武汉大学, 2021. [34] 任晓龙. 不同绝缘缺陷下放电量与SF6分解组分关联特性研究[D]. 重庆: 重庆大学, 2012. [35] 朱怡霖. 局部放电下SF6分解特性的研究[D]. 长沙: 长沙理工大学, 2013. [36] 潘建宇. 局部过热状态下六氟化硫气体的分解特性[D]. 重庆: 重庆大学, 2014. [37] 黄秀娟. 涉及有机固体绝缘材料时六氟化硫局部过热分解产物研究[D]. 重庆: 重庆大学, 2015. [38] International Electrotechnical Commission.Specifications for the re-use of sulphur hexafluoride (SF6) and its mixtures in electrical equipment: IEC 60480: 2019[S]. IEC, 2019. [39] 田双双, 兰佳琪, 饶夏锦, 等. C6F12O/N2混合气体与密封橡胶材料在不同温度下的相容性研究[J]. 高电压技术, 2022, 48(11): 4275-4286. Tian Shuangshuang, Lan Jiaqi, Rao Xiajin, et al.Study on compatibility between C6F12O/N2 gas mixture and sealing rubber material at different temperatures[J]. High Voltage Engineering, 2022, 48(11): 4275-4286. [40] Muniz-Miranda M, Muniz-Miranda F, Caporali S.SERS and DFT study of copper surfaces coated with corrosion inhibitor[J]. Beilstein Journal of Nanote-chnology, 2014, 5: 2489-2497. |
|
|
|