|
|
Thermo-Mechanical Co-Design of Double Sided Cooling Power Module for Electric Vehicle Application |
Zeng Zheng1, Ou Kaihong1, Wu Yibo2, Ke Haotao2, Zhang Xin3 |
1. State Key Laboratory of Power Transmission Equipment & System Security and New Technology Chongqing University Chongqing 400044 China; 2. State Key Laboratory of Advanced Power Semiconductor Devices CRRC Times Semiconductor Co. Ltd Zhuzhou 412001 China; 3. School of Electrical and Electronic Engineering Nanyang Technological University 639798 Singapore |
|
|
Abstract The double-sided cooling (DSC) packaging remarkably reduces the junction-case thermal resistance and interconnection electrical parasitic of the power module, which is recommended as the foundation of next-generation power control unit of the electric vehicle. However, some technical obstacles should be addressed for the emerging DSC power module. As far as now, the thermo-mechanical interaction mechanism in the DSC power module is not clear. Besides, the multi-physics-oriented co-design methodology of the DSC power module is not available. In this paper, to overcome the tradeoff between thermal resistance and mechanical stress, a multi-objective co-design method is proposed for the DSC power module. The mathematical models are proposed to characterize the thermal and mechanical properties of the DSC power module. In addition, how the material properties and packaging sizes influence the specifications of the DSC power module is insightfully investigated. The finite element analysis (FEA) simulation tool is employed to confirm the proposed models. Besides, a multi-objective optimization model is proposed to coordinately improve the thermo-mechanical performances of the DSC power module, and it is solved by the non-dominated sorting genetic algorithm II (NSGA-II). Finally, based on the proposed multi-objective co-design method, the influence of packaging materials on the optimization results is comparably investigated.
|
Received: 24 June 2019
|
|
|
|
|
[1] 王学梅. 宽禁带碳化硅功率器件在电动汽车中的研究与应用[J]. 中国电机工程学报, 2014, 34(3): 371-379. Wang Xuemei.Researches and applications of wide bandgap SiC power devices in electric vehicles[J]. Proceedings of the CSEE, 2014, 34(3): 371-379. [2] Yole Développement.EV-HEV market and techno- logy trends [EB/OL]. www.psma.com, 2015. [3] Hirschmann D, Tissen D, Schroder S, et al.Reliability prediction for inverters in hybrid elec- trical vehicles[J]. IEEE Transactions on Power Electronics, 2007, 22(6): 2511-2517. [4] Seal S, Mantooth H A.High performance silicon carbide power packaging—past trends, present prac- tices, and future directions[J]. Energies, 2017, 10(3): 1-30. [5] 王莉娜, 邓洁, 杨军一, 等. Si和SiC功率器件结温提取技术现状及展望[J]. 电工技术学报, 2019, 34(4): 703-716. Wang Lina, Deng Jie, Yang Junyi, et al.Junction temperature extraction methods for Si and SiC power devices-a review and possible alternatives[J]. Transactions of China Electrotechnical Society, 2019, 34(4): 703-716. [6] 王晓远, 杜静娟. CFD分析车用电机螺旋水路的散热特性[J]. 电工技术学报, 2018, 33(4): 955-963. Wang Xiaoyuan, Du Jingjuan.CFD analysis of heat transfer characterization in spiral channel cooling for permanent magnet electric machine in EVs[J]. Transactions of China Electrotechnical Society, 2018, 33(4): 955-963. [7] Zhang Hui, Ang S S, Mantooth H A, et al.A high temperature, double-sided cooling SiC power electro- nics module[C]//2013 IEEE Energy Conversion Con- gress and Exposition, Denver, Colorado, 2013: 2877-2883. [8] Zhu Nan, Mantooth H A, Xu Dehong, et al.A solution to press-pack packaging of SiC MOSFETs[J]. IEEE Transactions on Industrial Electronics, 2017, 64(10): 8224-8234. [9] Gonzalez J O, Alatise O, Aliyu A M, et al.Evaluation of SiC schottky diodes using pressure contacts[J]. IEEE Transactions on Industrial Electronics, 2017, 64(10): 8213-8223. [10] Kicin S, Laitinen M, Haederli C, et al.Low-voltage AC drive based on double-sided cooled IGBT press- pack modules[J]. IEEE Transactions on Industry Applications, 2012, 48(6): 2140-2146. [11] Ning Puqi, Liang Zhenxian, Wang Fred.Power module and cooling system thermal performance evaluation for HEV application[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2014, 2(3): 487-495. [12] Liang Zhenxian, Ning Puqi, Wang Fred.Deve- lopment of advanced all-SiC power modules[J]. IEEE Transactions on Power Electronics, 2014, 29(5): 2289-2295. [13] Li Shengnan, Tolbert L M, Wang Fred, et al.Stray inductance reduction of commutation loop in the P-cell and N-cell-based IGBT phase leg module[J]. IEEE Transactions on Power Electronics, 2014, 29(7): 3616-3624. [14] Yang Fei, Wang Zhiqiang, Liang Zhenxian, et al.Electrical performance advancement in SiC power module package design with kelvin drain connection and low parasitic inductance[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2019, 7(1): 84-98. [15] Yin Liang, Kapusta C, Gowda A, et al. A wire- bondless packaging platform for silicon carbide power semiconductor devices[J]. Journal of Elec- tronic Packaging, 2018, 140(3): 031009-1-8. [16] Vagnon E, Jeannin P O, Crebier J C, et al.A bus- bar-like power module based on three-dimensional power-chip-on-chip hybrid integration[J]. IEEE Transactions on Industry Applications, 2010, 46(5): 2046-2055. [17] Regnat G, Jeannin P O, Frey D, et al.Optimized power modules for silicon carbide MOSFET[J]. IEEE Transactions on Industry Applications, 2018, 54(2): 1634-1644. [18] Zhao Xin, Gao Bo, Zhang Liqi, et al.Performance optimization of a 1.2kV SiC high density half bridge power module in 3D package[C]//2018 IEEE Applied Power Electronics Conference and Exposition (APEC), San Antonio, USA, 2018: 1266-1271. [19] Lasserre P, Lambert D, Castellazzi A.Integrated bi-directional SiC MOSFET power switches for efficient, power dense and reliable matrix converter assembly[C]//2016 IEEE 4th Workshop on Wide Bandgap Power Devices and Applications (WiPDA), Fayetteville, Argentina, 2016: 188-193. [20] Wang Meiyu, Mei Yunhui, Li Xin, et al.Pressureless silver sintering on nickel for power module pack- aging[J]. IEEE Transactions on Power Electronics, 2019, 34(8): 7121-7125. [21] Mei Yunhui, Lian Jiaoyuan, Chen Xu, et al.Thermo- mechanical reliability of double-sided IGBT asse- mbly bonded by sintered nanosilver[J]. IEEE Transactions on Device and Materials Reliability, 2014, 14(1): 194-202. [22] Sienski K, Eden R, Schaefer D.3-D electronic interconnect packaging[C]//1996 IEEE Aerospace Applications Conference Proceedings, Aspen, Colo- rado, USA, 1996: 363-373. [23] Tanisawa H, Kato F, Koui K, et al. Transient thermal characteristics of high-temperature SiC power module enhanced with Al-bump technology[J]. Japanese Journal of Applied Physics, 2018, 57: 04FR10-1-5. [24] Matsushita A, Saito R, Tokuyama T, et al.An experimental study on the thermal performance of double-side direct-cooling power module structure[C]// IEEE International Exhibition and Conference for Power Electronics, Intelligent Motion, Renewable Energy and Energy Management, Nuremberg, Germany, 2016: 1-5. [25] Aranzabal I, Alegria I M, Delmonte N, et al.Comparison of the heat transfer capabilities of conventional single-phase and two-phase cooling systems for electric vehicle IGBT power module[J]. IEEE Transactions on Power Electronics, 2019, 34(5): 4185-4194. [26] Buttay C, Rashid J, Johnson C M, et al.High performance cooling system for automotive inver- ters[C]//2007 European Conference on Power Elec- tronics and Applications, Aalborg, 2007: 1-9. [27] Woo D R M, Hwang H Y, Jerry A J L, et al. Miniaturized double side cooling packaging for high power 3 phase SiC inverter module with junction temperature over 220℃[C]//IEEE 66th Electronic Components and Technology Conference (ECTC), Las Vegas, Nevada, 2016: 1190-1196. [28] Dwarakanath S, Raj P M, Smet V, et al.High- temperature and moisture-ageing reliability of high- density power packages for electric vehicles[C]// IEEE Electronic Components and Technology Con- ference, San Diego, California, 2018: 179-184. [29] Grassmann A, Geitner O, Hable W, et al.Double sided cooled module concept for high power density in HEV applications[C]//Proceedings of PCIM Europe 2015; International Exhibition and Conference for Power Electronics, Intelligent Motion, Renewable Energy and Energy Management, Nuremberg, Ger- many, 2015: 1-7. [30] Solomona A K, Skuriat R, Castellazzi A, et al.Modular integration of a matrix converter[J]. IEEJ Transactions on Electrical and Electronic Engin- eering, 2016, 11(1): 103-111. [31] Marbut C J, Montazeri M, Huitink D R.Rapid solder interconnect fatigue life test methodology for predicting thermomechanical reliability[J]. IEEE Transactions on Device and Materials Reliability, 2018, 18(3): 412-421. [32] Evans T M, Le Quang, Mukherjee S, et al.Power- Synth: A power module layout generation tool[J]. IEEE Transactions on Power Electronics, 2019, 34(6): 5063-5078. [33] Ji Bing, Song Xueduan, Sciberras E, et al.Multi objective design optimization of IGBT power modules considering power cycling and thermal cycling[J]. IEEE Transactions on Power Electronics, 2015, 30(5): 2493-2504. [34] Dragicevic T, Wheeler P, Blaabjerg F.Artificial intelligence aided automated design for reliability of power electronic systems[J]. IEEE Transactions on Power Electronics, 2019, 34(8): 7161-7171. [35] Bindra A, Mantooth A.Modern tool limitations in design automation: advancing automation in design tools is gathering momentum[J]. IEEE Power Elec- tronics Magazine, 2019, 6(1): 28-33. [36] Li Hui, Liao Xinglin, Zeng Zheng, et al.Thermal coupling analysis in a multichip paralleled IGBT module for a DFIG wind turbine power converter[J]. IEEE Transactions on Energy Conversion, 2017, 32(1): 80-90. [37] Yole Développement.Infineon FF400R07A01E3[EB/OL]. www.systemplus.fr, 2018. [38] Infineon. FF400R07A01E3_S6 datasheet[EB/OL]. www.infineon.com, 2018. [39] 王学梅, 张波, 吴海平. 基于失效物理的功率器件疲劳失效机理[J]. 电工技术学报, 2019, 34(4): 717-727. Wang Xuemei, Zhang Bo, Wu Haiping, et al.A review of fatigue mechanism of power devices based on physics-of-failure[J]. Transactions of China Elec- trotechnical Society, 2019, 34(4): 717-727. [40] 蔡杰, 周雒维, 彭英舟, 等. 一种IGBT模块端口等效耦合热阻抗的离散化方波提取法[J]. 电工技术学报, 2018, 33(7): 1440-1449. Cai Jie, Zhou Luowei, Peng Yingzhou, et al.A discrete square wave extraction method for the port equivalent coupled thermal impedance of IGBT modules[J]. Transactions of China Electrotechnical Society, 2018, 33(7): 1440-1449. [41] Hanif A, Yu Yuechuan, Devoto D, et al.A com- prehensive review toward the state-of-the-art in failure and lifetime predictions of power electronic devices[J]. IEEE Transactions on Power Electronics, 2019, 34(5): 4729-4746. [42] Hu Borong, Gonzalez J O, Ran Li, et al.Failure and reliability analysis of a SiC power module based on stress comparison to a Si device[J]. IEEE Transa- ctions on Device and Materials Reliability, 2017, 17(4): 727-737. [43] Ciappa M.Selected failure mechanisms of modern power modules[J]. Microelectronics Reliability, 2002, 42(4-5): 653-667. [44] 李亚萍, 周雒维, 孙鹏菊, 等. 基于特定集电极电流下饱和压降的IGBT模块老化失效状态监测方法[J]. 电工技术学报, 2018, 33(14): 3202-3212. Li Yaping, Zhou Luowei, Sun Pengju, et al.Con- dition monitoring for IGBT module aging failure on VCE(on) under certain IC conditions[J]. Transactions of China Electrotechnical Society, 2018, 33(14): 3202-3212. |
|
|
|