|
|
Optimized Battery Model Based Adaptive Sigma Kalman Filter for State of Charge Estimation |
Liu Yi1, Tan Guojun1, He Xiaoqun1, 2 |
1. School of Information and Electrical Engineering China University of Mining and Technology Xuzhou 221008 China; 2. Kailuan ( Group) Co. Ltd Tangshan 063000 China |
|
|
Abstract The nonlinear model was applied to describe the lithium iron phosphate battery by mathematical model method, and the status model and observation model were optimized. Take into consideration the influences of charge-discharge rate, temperature variation and aging cycle life, the status model was improved. The observation model was also compensated for battery relaxation and polarization effect. Thus, the battery modeling accuracy was enhanced, and state of charge (SOC) estimation error caused by battery model was reduced under different conditions. Then, on the basis of the parameters identification for battery model, an improved adaptive sigma Kalman filter algorithm was proposed to construct the SOC estimation model. According to state variables distribution of the nonlinear model, the sigma sample sequence was built. Each model residual error covariance of output was used to update the covariance of the noise in real time. The optimal estimate sigma sampling sequence and the weights of noise were also reassigned by real-time updates with low computational complexity. The experiments were carried out to estimate the properties by charge, continuous-current discharge, backlash-current discharge and varying current discharge mode. The results verify the rapid convergence and more accurate mathematical description. It is shown that the accuracy of SOC estimation is improved using proposed model and algorithm.
|
Received: 08 January 2016
Published: 08 February 2017
|
|
|
|
|
[1] 刘卓然, 陈健, 林凯, 等. 国内外电动汽车发展现状与趋势[J]. 电力建设, 2015, 36(7): 25-32. Liu Zhuoran, Chen Jian, Lin Kai, et al. Domestic and foreign present situation and the tendency of electric vehicles[J]. Electric Power Construction, 2015, 36(7): 25-32. [2] 郭煜华, 范春菊. 含大规模电动汽车的配电网保护技术研究[J]. 电力系统保护与控制, 2015, 43(8): 14-20. Guo Yuhua, Fan Chunju. Research on relaying technologies of distribution network including mass electric vehicles[J]. Power System Protection and Control, 2015, 43(8): 14-20. [3] 张祥文, 江星星, 王龙, 等. 配电网接纳电动汽车能力评估方法研究[J]. 电力系统保护与控制, 2015, 43(12): 14-20. Zhang Xiangwen, Jiang Xingxing, Wang Long, et al. Research on assessment methods of distribution network’s ability of admitting electric vehicles[J]. Power System Protection and Control, 2015, 43(12): 14-20. [4] 吕帅帅, 汪兴兴, 倪红军, 等. 电动汽车能量管理系统的功能及研究进展[J]. 电源技术, 2014, 38(2): 386-389. Lü Shuaishuai, Wang Xingxing, Ni Hongjun, et al. Research progress of energy management system for electric vehicle[J]. Chinese Journal of Power Source, 2014, 38(2): 386-389. [5] 连湛伟, 石欣, 克潇, 等. 电动汽车充换电站动力电池全寿命周期在线检测管理系统[J]. 电力系统保护与控制, 2014, 42(12): 137-142. Lian Zhanwei, Shi Xin, Ke Xiao, et al. The whole life cycle on-line detection and management system of power battery in the electric vehicel[J]. Power System Protection and Control, 2014, 42(12): 137-142. [6] 闫金定. 锂离子电池发展现状及其前景分析[J]. 航空学报, 2014, 35(10): 2767-2775. Yan Jinding. Current status and development analysis of lithium-ion batteries[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(10): 2767-2775. [7] 杜涛, 李爱魁, 马军, 等. 动力电池SOC预估方法研究进展[J]. 电源技术, 2015, 39(4): 844-848. Du Tao, Li Aikui, Ma Jun, et al. Research progress of SOC estimation of power battery[J]. Chinese Journal of Power Source, 2015, 39(4): 844-848. [8] 艾洪克, 吴俊勇, 田明杰, 等. 组合级联式大容量储能系统两级SOC自均衡策略研究[J]. 电力系统保护与控制, 2014, 42(22): 75-80. Ai Hongke, Wu Junyong, Tian Mingjie, et al. Research on two-stage SOC self-balancing control strategy in hybrid cascade energy storagy system[J]. Power System Protection and Control, 2014, 42(22): 75-80. [9] Lu L, Han X, Li J, et al. A review on the key issues for lithium-ion battery management in electric vehicles[J]. Journal of Power Sources, 2013, 226(6): 272-288. [10] 陈息坤, 孙冬, 陈小虎. 锂离子电池建模及其荷电状态鲁棒估计[J]. 电工技术学报, 2015, 30(15): 141-147. Chen Xikun, Sun Dong, Chen Xiaohu. Modeling and state of charge robust estimation for lithium-ion batteries[J]. Transactions of China Electrotechnical Society, 2015, 30(15): 141-147. [11] 卢居霄, 林成涛, 陈全世, 等. 三类常用电动汽车电池模型的比较研究[J]. 电源技术, 2006, 30(7): 535-538. Lu Juxiao, Lin Chengtao, Chen Quanshi, et al. Comparison study of 3 types of battery models for electrical vehicle[J]. Chinese Journal of Power Sources, 2006, 30(7): 535-538. [12] 刘金枝, 杨鹏, 李练兵. 一种基于能量建模的锂离子电池电量估算方法[J]. 电工技术学报, 2015, 30(13): 100-107. Liu Jinzhi, Yang Peng, Li Lianbing. A method to estimate the capacity of the lithium-ion battery based on energy model[J]. Transactions of China Electro- technical Society, 2015, 30(13): 100-107. [13] 于海芳, 逯仁贵, 朱春波, 等. 基于安时法的镍氢电池SOC估计误差校正[J]. 电工技术学报, 2012, 27(6): 12-18. Yu Haifang, Lu Rengui, Zhu Chunbo, et al. State of charge estimation calibration for Ni-MH battery based on ampere-hour method[J]. Transactions of China Electrotechnical Society, 2012, 27(6): 12-18. [14] 林成涛, 陈全世, 王军平, 等. 用改进的安时计量法估计电动汽车动力电池SOC[J]. 清华大学学报:自然科学版, 2006, 46(2): 247-251. Lin Chengtao, Chen Quanshi, Wang Junping, et al. Improved Ah counting method for state of charge estimation of electric vehicle batteries[J]. Journal of Tsinghua Univercity (Science and Tchnology), 2006, 46(2): 247-251. [15] 林成涛, 王军平, 陈全世. 电动汽车SOC估计方法原理与应用[J]. 电池, 2004, 34(5): 376-378. Lin Chengtao, Wang Junping, Chen Quanshi. Methods for state of charge estimation of EV batteries and their application[J]. Battery Bimonthly, 2004, 34(5): 376-378. [16] He H, Zhang X, Xiong R, et al. Online model-based estimation of state-of-charge and open-circuit voltage of lithium-ion batteries in electric vehicles[J]. Energy, 2012, 39(1): 310-318. [17] Rodrigues S, Munichandraiah N, Shukla A K. Review of state-of-charge indication of batteries by means of a.c. impedance measurements[J]. Journal of Power Sources, 2000, 87(1-2): 12-20. [18] 李革臣, 古艳磊. 电化学阻抗谱法预测锂电池荷电状态[J]. 电源技术, 2008, 32(9): 599-602. Li Gechen, Gu Yanlei. SOC of lithium ion rech- argeable battery predicted by electrochemical impe- dance spectroscopy[J]. Chinese Journal of Power Source, 2008, 32(9): 599-602. [19] Kim D, Goh T, Park M, et al. Fuzzy sliding mode observer with grey prediction for the estimation of the state-of-charge of a lithium-ion battery[J]. Energies, 2015, 8(11): 12409-12428. [20] Peng R, Pedram M. An analytical model for predicting the remaining battery capacity of lithium- ion batteries[J]. IEEE Transactions on Very Large Scale Integration Systems, 2006, 14(5): 441-451. [21] 雷肖, 陈清泉, 刘开培, 等. 电动车电池SOC估计的径向基函数神经网络方法[J]. 电工技术学报, 2008, 23(5): 81-87. Lei Xiao, Chen Qingquan, Liu Kaipei, et al. Radial-based function neural network based SOC estimation for electric vehicles[J]. Transactions of China Electrotechnical Society, 2008, 23(5): 81-87. [22] 刘艳莉, 戴胜, 程泽, 等. 基于有限差分扩展卡尔曼滤波的锂离子电池SOC估计[J]. 电工技术学报, 2014, 29(1): 221-228. Liu Yanli, Dai Sheng, Cheng Ze, et al. Estimation of state of charge of lithium-ion battery based on finite difference extended Kalman filter[J]. Transactions of China Electrotechnical Society, 2014, 29(1): 221-228. [23] He H, Xiong R, Zhang X, et al. State-of-charge estimation of the lithium-ion battery using an adap- tive extended Kalman filter based on an improved Thevenin model[J]. IEEE Transactions on Vehicular Technology, 2011, 60(4): 1461-1469. [24] Xiong R, Gong X, Mi C C, et al. A robust state- of-charge estimator for multiple types of lithium-ion batteries using adaptive extended Kalman filter[J]. Journal of Power Sources, 2013, 243(6): 805-816. [25] 高明煜, 何志伟, 徐杰. 基于采样点卡尔曼滤波的动力电池SOC估计[J]. 电工技术学报, 2011, 26(11): 161-167. Gao Mingyu, He Zhiwei, Xu Jie. Sigma point Kalman filter based SOC estimation for power supply battery[J]. Transactions of China Electrotechnical Society, 2011, 26(11): 161-167. [26] 胡志坤, 刘斌, 林勇, 等. 电池SOC的自适应平方根无极卡尔曼滤波估计算法[J]. 电机与控制学报, 2014, 18(4): 111-116. Hu Zhikun, Liu Bin, Lin Yong, et al. Adaptive square root unscented Kalman filter for SOC estimation of battery[J]. Electric Machine and Control, 2014, 18(4): 111-116. [27] 魏克新, 陈峭岩. 基于自适应无迹卡尔曼滤波算法的锂离子动力电池状态估计[J]. 中国电机工程学报, 2014, 34(3): 445-452. Wei Kexin, Chen Qiaoyan. States estimation of Li-ion power batteries based on adaptive unscented Kalman filters[J]. Proceedings of the CSEE, 2014, 34(3): 445-452. |
|
|
|