|
|
Transient Voltage Stability Assessment of Power Systems Based on Phase Correction Maximum Lyapunov Exponent |
Wang Changjiang1, Jiang Tao1, Chen Houhe1, Li Guoqing1, Liu Fusuo2 |
1. Key Laboratory of Modern Power System Simulation and Control & Renewable Energy Technology Ministry of Education Northeast Electric Power University Jilin 132012 China; 2. State Key Laboratory of Smart Grid Protection and Control Nari Group Corporation Nanjing 211106 China |
|
|
Abstract Wide-area measurement based transient voltage stability assessment is an effective approach to assess the voltage stability in bulk power systems. However, the phase change and measurement error of the voltage time series may result in a false result of transient voltage stability evaluation. To deal with these shortcomings, a phase-corrected maximum Lyapunov exponents (PCMLE) is proposed in this work to assess the transient voltage stability of power systems. Firstly, transient voltage stability evaluation problem was decomposed into MLE analysis problems of the key node voltage deviation curves based on phase space reconstruction and the characteristic curves of the change rate of voltage vs. voltage deviation. Then, a phase-corrected based reconstruct model for the initial time window data while retaining the voltage dynamic process, and the influence of phase change was eliminated. Meanwhile, the shortcoming of setting up MLE sign observation window and initial time window in advance has been overcome. Furthermore, the influence of measurement error was inhibited based on moving average method. With the aid of the proposed PCMLE model, the transient voltage stability assessment with oscillation instability and delay instability can be achieved. Finally, the proposed method is evaluated by a modified IEEE 39 bus system and China Southern Power Grid, and the results verify the accuracy and effectiveness of the proposed approach.
|
Received: 09 November 2020
|
|
|
|
|
[1] 赖全怡, 陈民权, 李尚远, 等. 含高密度光伏电源的受端电网暂态电压有理分式拟合分析[J]. 中国电机工程学报, 2019, 39(11): 3186-3194. Lai Quanyi, Chen Minquan, Li Shangyuan, et al.Transient voltage analysis for receiving power system with high PV penetration based on rational fraction fitting method[J]. Proceedings of the CSEE, 2019, 39(11): 3186-3194. [2] 骆悦, 姚骏, 张田, 等. 大规模风电直流外送系统单极闭锁场景下送端系统协调控制策略[J]. 电工技术学报, 2019, 34(19): 4108-4118. Luo Yue, Yao Jun, Zhang Tian, et al.Coordinated control strategy of large-scale wind power generation sending system under mono-polar block fault[J]. Transactions of China Electrotechnical Society, 2019, 34(19): 4108-4118. [3] 蔡游明, 李征, 蔡旭. 计及控制时间窗内功率波动的风电场群无功电压分层优化控制[J]. 电工技术学报, 2019, 34(6): 1240-1250. Cai Youming, Li Zheng, Cai Xu.Voltage hierarchical optimal control of a wind farm cluster in account of voltage fluctuation in control time window[J]. Transactions of China Electrotechnical Society, 2019, 34(6): 1240-1250. [4] 陈厚合, 鲁华威, 王长江, 等. 抑制直流送端系统暂态过电压的直流和风电控制参数协调优化[J]. 电力自动化设备, 2020, 40(10): 46-55. Chen Houhe, Lu Huawei, Wang Changjiang, et al.Coordinated optimization of HVDC and wind power control parameters for mitigating transient overvoltage on HVDC sending-side system[J]. Electric Power Automation Equipment, 2020, 40(10): 46-55. [5] 杨堤, 程浩忠, 马则良, 等. 考虑静态和暂态电压稳定的交直流混联系统综合无功规划方法研究[J]. 中国电机工程学报, 2017, 37(11): 3078-3086, 3363. Yang Di, Cheng Haozhong, Ma Zeliang, et al.Integrated reactive power planning methodology considering static and transient voltage stability for AC-DC hybrid system[J]. Proceedings of the CSEE, 2017, 37(11): 3078-3086, 3363. [6] 袁佳歆, 王传盛, 朱勇, 等. 一种新型超特大容量高压电动机软起动方法[J]. 电机与控制学报, 2019, 23(4): 67-74. Yuan Jiaxin, Wang Chuansheng, Zhu Yong, et al.Soft start method of super large capacity and high voltage motor[J]. Electric Machines and Control, 2019, 23(4): 67-74. [7] 颜湘武, 徐韵. 考虑网络动态重构含多异质可再生分布式电源参与调控的配电网多时空尺度无功优化[J]. 电工技术学报, 2019, 34(20): 4358-4372. Yan Xiangwu, Xu Yun.Multiple time and space scale reactive power optimization for distribution network with multi-heterogeneous RDG participating in regulation and considering network dynamic reconfig-uration[J]. Transactions of China Electrotechnical Society, 2019, 34(20): 4358-4372. [8] 李辉, 谢翔杰, 刘行中, 等. 风电变桨电机参数对控制系统影响分析及改进辨识方法[J]. 电机与控制学报, 2019, 23(7): 9-18. Li Hui, Xie Xiangjie, Liu Xingzhong, et al.Influence of parameters on control system and improved identification method of pitch motor in wind turbine generator system[J]. Electric Machines and Control, 2019, 23(7): 9-18. [9] 屠竞哲, 张健, 刘明松, 等. 考虑风机动态特性的大扰动暂态过电压机理分析[J]. 电力系统自动化, 2020, 44(11): 197-205. Tu Jingzhe, Zhang Jian, Liu Mingsong, et al.Mechanism analysis of transient overvoltage with large disturbance considering dynamic characteristics of wind generator[J]. Electric Power Automation Equipment, 2020, 44(11): 197-205. [10] 薛安成, 周健, 刘瑞煌, 等. 采用多二元表判据的实用暂态电压稳定裕度指标研究[J]. 中国电机工程学报, 2018, 38(14): 4117-4125, 4317. Xue Ancheng, Zhou Jian, Liu Ruihuang, et al.A new practical transient voltage stability margin index based on multiple-two-element notation criterion[J]. Proceedings of the CSEE, 2018, 38(14): 4117-4125, 4317. [11] Zhang Dongdong, Liu Tianhao.Effects of voltage sag on the performance of induction motor based on a new transient sequence component method[J]. CES Transactions on Electrical Machines and Systems, 2019, 3(3): 316-324. [12] 李雪, 姜涛, 李国庆, 等. 基于相关增益的电压稳定关键注入区域识别[J]. 电工技术学报, 2018, 33(4): 739-749. Li Xue, Jiang Tao, Li Guoqing, et al.Voltage stability critical injection area determination via cross-relative gain[J]. Transactions of China Electrotechnical Society, 2018, 33(4): 739-749. [13] 舒展, 张伟晨, 王光, 等. 特高压直流接入江西电网后的故障影响分析及其应对措施[J]. 电力系统保护与控制, 2019, 47(20): 163-170. Shu Zhan, Zhang Weichen, Wang Guang, et al.Fault analysis and its countermeasures of Jiangxi Provincial Grid after UHVDC line connection[J]. Power System Protection and Control, 2019, 47(20): 163-170. [14] 边宏宇, 徐友平, 邵德军, 等. 直流馈入受端电网“空心化”形势下的稳定特性分析及解决措施[J]. 电力系统保护与控制, 2020, 48(18): 164-170. Bian Hongyu, Xu Youping, Shao Dejun, et al.Analysis of stability characteristics and solutions with the hollowing of a DC feed power grid[J]. Power System Protection and Control, 2020, 48(18): 164-170. [15] 杨维全, 朱元振, 刘玉田. 基于卷积神经网络的暂态电压稳定快速评估[J]. 电力系统自动化, 2019, 43(22): 46-51, 136. Yang Weiquan, Zhu Yuanzhen, Liu Yutian.Fast assessment of transient voltage stability based on convolutional neural network[J]. Electric Power Automation Equipment, 2019, 43(22): 46-51, 136. [16] 周孝信, 陈树勇, 鲁宗相, 等. 能源转型中我国新一代电力系统的技术特征[J]. 中国电机工程学报, 2018, 38(7): 1893-1904. Zhou Xiaoxin, Chen Shuyong, Lu Zongxiang, et al.Technology features of the new generation power system in China[J]. Proceedings of the CSEE, 2018, 38(7): 1893-1904. [17] 王长江, 姜涛, 刘福锁, 等. 基于轨迹灵敏度的暂态过电压两阶段优化控制[J]. 电工技术学报, 2021, 36(9): 1888-1900. Wang Changjiang, Jiang Tao, Liu Fusuo, et al.Two-stage optimization control of transient overvoltage based ontrajectory sensitivity[J]. Transactions of ChinaElectrotechnical Society, 2021, 36(9): 1888-1900. [18] 李辉, 王震, 周挺, 等. 含同步调相机的直流受端换流站全工况下多模式协调控制策略[J]. 电工技术学报, 2020, 35(17): 3678-3690. Li Hui, Wang Zhen, Zhou Ting, et al.Multi-mode coordinated control strategy for DC receiving converter station with synchronous condenser under full operating conditions[J]. Transactions of China Electrotechnical Society, 2020, 35(17): 3678-3690. [19] 杨松浩, 王怀远, 苏福, 等. 基于相轨迹凹凸性的暂态不稳定性判别方法的分析比较[J]. 电力自动化设备, 2017, 37(9): 193-198. Yang Songhao, Wang Huaiyuan, Su Fu, et al.Analysis and comparison of transient instability detection methods based on convexity and concavity of phase trajectory[J]. Electric Power Automation Equipment, 2017, 37(9): 193-198. [20] Xu Yan, Zhang Rui, Zhao Junhua, et al.Assessing short-term voltage stability of electric power systems by a hierarchical intelligent system[J]. IEEE Transactions on Neural Networks and Learning Systems, 2016, 27(8): 1686-1696. [21] Zhu Lipeng, Lu Chao, Sun Yuanzhang.Time series shapelet classification based online short-term voltage stability assessment[J]. IEEE Transactions on Power Systems, 2016, 31(2): 1430-1439. [22] Zhang Yuchen, Xu Yan, Dong Zhaoyang, et al.A hierarchical self-adaptive data-analytics method for power system short-term voltage stability assessment[J]. IEEE Transactions on Industrial Informatics, 2019, 15(1): 74-84. [23] Zhang Rui, Xu Yan, Dong Zhaoyang, et al.Post-disturbance transient stability assessment of power systems by a self-adaptive intelligent system[J]. Generation Transmission and Distribution IET, 2015, 9(3): 296-305. [24] Prasad W D, Wu C Q, Annakkage U D.Power system transient stability analysis via the concept of Lyapunov exponents[J]. Electric Power Systems Research, 2013, 104: 183-192. [25] Ravikumar G, Khaparde S A.Taxonomy of PMU data based catastrophic indicators for power system stability assessment[J]. IEEE Systems Journal, 2018, 12(1): 452-464. [26] Modarresi J, Gholipour E, Khodabakhshian A.A comprehensive review of the voltage stability indices[J]. Renewable and Sustainable Energy Reviews, 2016, 63(1):1-12. [27] Liu C W, Thorp J S, Lu J, et al.Detection of transiently chaotic swings in power systems using real-time phasor measurements[J]. IEEE Transactions on Power Systems, 1994, 9(3): 1285-1292. [28] Dasgupta S, Paramasivam M, Vaidya U, et al.PMU-based model-free approach for real-time rotor angle monitoring[J]. IEEE Transactions on Power Systems, 2015, 30(5): 2818-2819. [29] Pinzón J D, Colomé D G.Chaos in power systems: towards short-term voltage stability analysis[C]//2018 IEEE PES Transmission & Distribution Conference and Exhibition-Latin America (T&D-LA), Lima, 2018. [30] .He Jiawei, Wang Tong, Wang Zengping, et al.Switching system's MLE based transient stability assessment of AC/DC hybrid system considering continuous commutation failure[J]. IEEE Transactions on Power Systems, 2021, 36(1): 757-768. [31] Dasgupta S, Paramasivam M, Vaidya U, et al.Real-time monitoring of short-term voltage stability using PMU data[J]. IEEE Transactions on Power Systems, 2013, 28(4): 3702-2711. [32] Safavizadeh A, Kordi M, Fariborz E, et al.Framework for real-time short-term stability assessment of power systems using PMU measurements[J]. IET Generation, Transmission and Distribution, 2019, 13(15): 3433-3442. [33] Pinzon J D, Colome D G.PMU-based online monitoring of short-term voltage stability using lyapunov exponents[J]. IEEE Latin America Transactions, 2019, 17(10): 1578-1587. [34] Ge Huaichang, Guo Qinglai, Sun Hongbin, et al.An improved real-time short-term voltage stability monitoring method based on phase rectification[J]. IEEE Transactions on Power Systems, 2018, 33(1): 1068-1070. [35] Kang Y C, lim U J, Kang S H, et al. Compensation of the distortion in the secondary current caused by saturation and remanence in a CT[J]. IEEE Transactions on Power Delivery, 2004, 19(4): 1642-1649. |
|
|
|