|
|
A Power Transfer Optimization Model of Receiving-End Power Systems Considering Line Joint Temperature Rise Constraints |
Zhou Niancheng1, Lan Xueke1, Mo Fuxue1, Lei Chao2, Wang Qianggang1 |
1. State Key Laboratory of Power Transmission Equipment & System Security and New Technology Chongqing University Chongqing 400044 China; 2. State Grid Sichuan Electric Power Company Tianfu Power Supply Company Chengdu 610000 China |
|
|
Abstract To relieve the continuous heating problem of transmission line joint caused by abnormal temperature rise under heavy load and high temperature conditions, this paper proposes an power transfer optimization model of receiving-end power system considering line joint temperature rise constraints. Firstly, based on electro-thermal coupling theory, the equivalent thermal model of line joint temperature rise and its parameter estimation method are studied. And using power flow variation as the intermediate variable, the linearized equation of line joint temperature rise with load changes under a certain operation point is derived. Combining with the topology of 220kV/110kV receiving-end power system, the linear constraints of the line joint temperature rise with power flow transferring is constructed. And then a power transfer optimization model is proposed in the constraints of line joint temperature rise, electro-thermal flow security, active power balance and radial grid structure, for the objective function of minimum switching number. The model is a mixed integer linear programming problem, so CPLEX tools are used for solving. Finally, a practical 220kV/110kV receiving-end power system is used for simulating and verifying that the proposed model is effective.
|
Received: 11 August 2020
|
|
|
|
|
[1] 林杰, 刘刚, 张海鹏, 等. 架空线路并沟线夹温度分布研究[J]. 电力系统保护与控制, 2013, 41(24): 88-94. Lin Jie, Liu Gang, Zhang Haipeng, et al.Research of temperature distribution of overhead lines parallel groove clamp[J]. Power System Protection and Control, 2013, 41(24): 88-94. [2] 周纹霆, 董守龙, 王晓雨, 等. 电磁脉冲焊接电缆接头的装置的研制及测试[J]. 电工技术学报, 2019, 34(11): 2424-2434. Zhou Wenting, Dong Shoulong, Wang Xiaoyu, et al.Development and test of electromagnetic pulse welding cable joint device[J]. Transactions of China Electrotechnical Society, 2019, 34(11): 2424-2434. [3] 高云鹏, 谭甜源, 刘开培, 等. 电缆接头温度反演及故障诊断研究[J]. 高电压技术, 2016, 42(2): 535-542. Gao Yunpeng, Tan Tianyuan, Liu Kaipei, et al.Research on temperature retrieval and fault diagnosis of cable joint[J]. High Voltage Engineering, 2016, 42(2): 535-542. [4] 林晨炯, 林珍, 吴雅琳. 电缆接头温度在线监测方法研究综述[J]. 电气技术, 2019, 20(5): 1-4, 9. Lin Chenjiong, Lin Zhen, Wu Yalin.Summary of research on online monitoring method of cable joint temperature[J]. Electrical Engineering, 2019, 20(5): 1-4, 9. [5] 刘家军, 杜智亮, 李娟绒, 等. 铁路10kV电力电缆头发热分析与安全监测[J]. 电力系统保护与控制, 2019, 47(24): 131-138. Liu Jiajun, Du Zhiliang, Li Juanrong, et al.Thermal analysis and safety monitoring of railway 10 kV power cable joints[J]. Power System Protection and Control, 2019, 47(24): 131-138. [6] 王强钢, 李钰双, 雷超, 等. 计及主变上层油温约束的受端电网转供优化模型[J]. 中国电机工程学报, 2018, 38(16): 4747-4758. Wang Qianggang, Li Yushuang, Lei Chao, et al.A power transfer optimization model of receiving-end power systems considering transformer top-oil temperature constraints[J]. Proceedings of the CSEE, 2018, 38(16): 4747-4758. [7] 周念成, 谷飞强, 雷超, 等. 考虑合环电流约束的主动配电网转供优化模型[J]. 电工技术学报, 2020, 35(15): 3281-3291. Zhou Niancheng, Gu Feiqiang, Lei Chao, et al.Apower transfer optimization model of activedistribution networks in consideration of loop closingcurrent constraints[J]. Transactions of ChinaElectrotechnical Society, 2020, 35(15): 3281-3291. [8] Yang Tianshu, Guo Ye, Deng Lirong, et al.A linear branch flow model for radial distribution networks and its application to reactive power optimization and network reconfiguration[J]. IEEE Transactions on Smart Grid, 2021, 12(3): 2027-2036. [9] Zhan Junpeng, Liu Weijia, Chung C Y.Stochastic transmission expansion planning considering uncertain dynamic thermal rating of overhead lines[J]. IEEE Transactions on Power Systems, 2019, 34(1): 432-443. [10] IEEEStd 738—2012 IEEE standard for calculation of bare overhead conductor temperatures[S]. IEEE, 2013. [11] CIGRE Working Group B2.43. Guide for thermal rating calculation of overhead lines[S]. International Council on Large Electric Systems, 2014. [12] 王孟夏, 韩学山, 韦志清, 等. 电网运行环境下基于电热耦合潮流的架空线路应力预估[J]. 电工技术学报, 2019, 34(5): 1078-1087. Wang Mengxia, Han Xueshan, Wei Zhiqing, et al.Tension prediction of overhead transmission line based on electrothermal coupling power flow in operating power systems[J]. Transactions of China Electrotechnical Society, 2019, 34(5): 1078-1087. [13] 王艳玲, 莫洋, 韩学山, 等. 考虑气象时空分布特性的输电线路模型和分析方法[J]. 电工技术学报, 2020, 35(3): 636-645. Wang Yanling, Mo Yang, Han Xueshan, et al.Transmission line model and analysis method considering the time and space distribution characteristics of meteorology[J]. Transactions of China Electrotechnical Society, 2020, 35(3): 636-645. [14] Olsen R, Holboell J, Gudmundsdottir U S.Electrothermal coordination in cable based transmission grids[J]. IEEE Transactions on Power Systems, 2013, 28(4): 4867-4874. [15] 陈芳, 查浩, 韩学山, 等. 基于半参数平差模型的线路温度估计[J]. 电力系统自动化, 2015, 39(21): 81-86. Chen Fang, Cha Hao, Han Xueshan, et al.Transmission line temerperture estimation based on semi-paramettric adjustment model[J]. Automation of Electric Power Systems, 2015, 39(21): 81-86. [16] 应展烽, 杜志佳, 冯凯, 等. 高压架空导线径向热路模型及其参数计算方法[J]. 电工技术学报, 2016, 31(4): 13-21. Ying Zhanfeng, Du Zhijia, Feng Kai, et al.Radial Thermal circuit model and parameter calculation method for high voltage overhead transmission line[J]. Transactions of China Electrotechnical Society, 2016, 31(4): 13-21. [17] 胡剑, 熊小伏, 王建. 基于热网络模型的架空输电线路径向和周向温度计算方法[J]. 电工技术学报, 2019, 34(1): 139-152. Hu Jian, Xiong Xiaofu, Wang Jian.Radial and circumferential temperature calculation method of overhead transmission lines based on thermal network model[J]. Transactions of China Electrotechnical Society, 2019, 34(1): 139-152. [18] Zhan Junpeng, Liu Weijia, Liang Jun, et al.Calculation of power transfer limit considering electro-thermal coupling of overhead transmission line[J]. IEEE Transactions on Power Systems, 2014, 29(4): 1503-1511. [19] 高沁, 卫志农, 孙国强, 等. 计及线路电阻随温度变化影响的电力系统最优潮流[J]. 电力系统自动化, 2015, 39(16): 76-80. Gao Qing, Wei Zhinong, Sun Guoqiang, et al.Temperature-dependent power system optimal power flow[J]. Automation of Electric Power Systems, 2015, 39(16): 76-80. [20] 王孟夏, 韩学山, 黄金鑫, 等. 计及输电元件热惯性效应的安全约束最优潮流[J]. 中国电机工程学报, 2016, 36(5): 1181-1189. Wang Mengxia, Han Xueshan, Huang Jinxin, et al.Security constrained optimal power flow considering thermal inertia effect of transmission component[J]. Proceedings of the CSEE, 2016, 36(5): 1181-1189. [21] Dong Xiaoming, Kang Chongqing, Ding Yuanyuan, et al.Estimating the wind power integration threshold considering electro-thermal coupling of overhead transmission lines[J]. IEEE Transactions on Power Systems, 2019, 34(5): 3349-3358. [22] 侯宇, 王伟, 韦徵, 等. 输电线路动态增容技术研究及应用[J/OL]. 电力系统自动化: 1-13[2021-03-09]. http://kns.cnki.net/kcms/detail/32.1180.TP. 20201221.0959.004.html. Hou Yu, Wang Wei, Wei Zheng, et al.Research and application of dynamic rating technology of transmission lines[J]. Automation of Electric Power Systems: 1-13[2021-03-09].Research and application of dynamic rating technology of transmission lines[J]. Automation of Electric Power Systems: 1-13[2021-03-09].http://kns.cnki.net/kcms/ detail/32.1180.TP.20201221.0959.004.html. [23] Dawson L, Knight A M.Applicability of dynamic thermal line rating for long lines[J]. IEEE Transactions on Power Delivery, 2018, 33(2): 719-727. [24] Teng Fei, Dupin R, Michiorri A, et al.Understanding the benefits of dynamic line rating under multiple sources of uncertainty[J]. IEEE Transactions on Power Systems, 2018, 33(3): 3306-3314. [25] 冯凯, 应展烽, 陈汹, 等. 计及线路热惯性效应的模型预测控制安全经济调度模型[J]. 电工技术学报, 2018, 33(8): 1875-1883. Feng Kai, Ying Zhanfeng, Chen Xiong, et al.Model predictive control security economic dispatch model considering transmission line thermal inertia effect[J]. Transactions of China Electrotechnical Society, 2018, 33(8): 1875-1883. [26] 楼贤嗣, 王橹裕, 郭创新, 等. 考虑输电线路动态增容的增强型安全约束最优潮流[J]. 电力系统自动化, 2019, 43(18): 26-36. Lou Xiansi, Wang Luyu, Guo Chuangxin, et al.Enhanced security-constrained optimal power flow considering dynamic thermal rating of transmission lines[J]. Automation of Electric Power Systems, 2019, 43(18): 26-36. [27] 徐伟, 鲍颜红, 周海锋, 等. 基于阻塞分析的输电线路动态增容[J]. 电力系统保护与控制, 2016, 44(6): 15-22. Xu Wei, Bao Yanhong, Zhou Haifeng, et al.Transmission line dynamic capacity-increase based on congestion analysis[J]. Power System Protection and Control, 2016, 44(6): 15-22. [28] 董选昌, 曲烽瑞, 李艳飞, 等. 架空线路耐张线夹三维温度场仿真分析及验证[J]. 西南交通大学学报, 2019, 54(5): 997-1004. Dong Xuanchang, Qu Fengrui, Li Yanfei, et al.Simulation analysis and verification on three-dimensional temperature field of strain clamps for overhead lines[J]. Journal of Southwest Jiaotong University, 2019, 54(5): 997-1004. [29] 刘刚, 王鹏宇, 毛健琨, 等. 高压电缆接头温度场分布的仿真计算[J]. 高电压技术, 2018, 44(11): 3688-3698. Liu Gang, Wang Pengyu, Mao Jiankun, et al.Simulation calculation of temperature field distribution in high voltage cable joints[J]. High Voltage Engineering, 2018, 44(11): 3688-3698. [30] 国家能源局. DL/T 664-2016 带电设备红外诊断应用规范[S]. 2016. [31] 中华人民共和国国家质量监督检验检疫总局、中国国家标准化管理委员会. GB/T 25840-2010规定电气设备部件(特别是接线端子)允许温升的导则[S]. 2010. [32] 周念成, 何宽, 王强钢, 等. 高压配电网与天然气管网互联的转供优化模型[J]. 中国电机工程学报, 2020, 40(5): 1432-1443. Zhou Niancheng, He Kuan, Wang Qianggang, et al.An energy transfer optimization model of interconnected energy systems with high voltage distribution networks and natural gas networks[J]. Proceedings of the CSEE, 2020, 40(5): 1432-1443. [33] 国网四川省电力公司天府新区供电公司. 国网四川省电力公司天府新区电力系统2020年度运行方式[R]. 成都: 国网四川省电力公司天府新区供电公司, 2020. |
|
|
|