|
|
Study on Equivalence Method of AC System in Sending-End of LCC-HVDC |
Gao Benfeng1, Wang Gang1, Liu Yi1, Liu Xinyuan1,2, Hu Yongqiang1, Hao Yuqian1 |
1. Hebei Key Laboratory of Distributed Energy Storage and Micro-grid North China Electric Power University Baoding 071003 China; 2. State Grid Shanxi Electric Power Research Institute Taiyuan 030001 China |
|
|
Abstract When the sending-end of line-commutated-converter based high voltage direct current (LCC-HVDC) contains large-scale new energy, the risk of overvoltage on the sending-end will aggravate. It is necessary to establish the electromagnetic transient model of LCC-HVDC and its equivalent AC system in sending-end. Then the control strategy of LCC-HVDC can be optimized by analyzing its overvoltage characteristics. At present, there are few researches on the equivalence of AC system in sending-end. According to the engineering requirements, an equivalent scheme suitable for LCC-HVDC is proposed. First, the residual voltage of each node in the main network can reflect the coupling between LCC-HVDC and the sending-end. A method for determining the internal system backbone network based on the residual voltage is proposed. The method can quickly determine the scope of the internal system and effectively avoid the human error during the equivalence. Then, based on the node of backbone network, the topology area is divided, and the detailed parameter determination method of equivalent sources, loads and transformers in the internal system are given based on the principle of consistent electrical characteristics of each topology area before and after equivalence. Finally, the multi-port thevenin equivalent suitable for the sending-end of LCC-HVDC is used to simplify the external system. Based on a domestic LCC-HVDC, the effectiveness of the proposed equivalent scheme is verified.
|
Received: 09 October 2020
|
|
|
|
|
[1] 李明节, 陈国平, 董存, 等. 新能源电力系统电力电量平衡问题研究[J]. 电网技术, 2019, 43(11): 3979-3986. Li Mingjie, Chen Guoping, Dong Cun, et al.Research on power balance of high proportion renewable energy system[J]. Power System Technology, 2019, 43(11): 3979-3986. [2] 丁平, 安宁, 赵敏, 等. 一种实用的电压源型换流器及直流电网机电暂态建模方法[J]. 电工技术学报, 2017, 32(10): 69-76. Ding Ping, An Ning, Zhao Min, et al.A practical modeling method of VSC-HVDC and DC-grid electromechanical transient[J]. Transactions of China Electrotechnical Society, 2017, 32(10): 69-76. [3] 盛逸标, 林涛, 陈宝平, 等. 面向新能源外送系统次/超同步振荡的控制器参数协调优化[J]. 电工技术学报, 2019, 34(5): 983-993. Sheng Yibiao, Lin Tao, Chen Baoping, et al.Coordination and optimization of controller parameters for subsynchronous/super-synchronous oscillation in new energy delivery systems[J]. Transactions of China Electrotechnical Society, 2019, 34(5): 983-993. [4] 高本锋, 刘毅, 宋瑞华, 等. 双馈风电场经LCC-HVDC 送出的次同步振荡特性研究[J]. 中国电机工程学报, 2020, 40(11): 3477-3489. Gao Benfeng, Liu Yi, Song Ruihua.Study on sub-synchronous oscillation characteristics of DFIG-based wind farm integrated with LCC-HVDC system[J]. Proceedings of the CSEE, 2020, 40(11): 3477-3489. [5] 李辉, 王震, 周挺, 等. 含同步调相机的直流受端换流站全工况下多模式协调控制策略[J]. 电工技术学报, 2020, 35(17): 3678-3690. Li Hui, Wang Zhen, Zhou Ting, et al.Multi-mode coordinated control strategy for DC receiving converter station with synchronous condenser under full operating conditions[J]. Transactions of China Electrotechnical Society, 2020, 35(17): 3678-3690. [6] 冀肖彤. 抑制HVDC送端交流暂态过电压的控制系统优化[J]. 电网技术, 2017, 41(3): 721-728. Ji Xiaotong.Optimization of HVDC control system for mitigating AC transient overvoltage on rectifier station[J]. Power System Technology, 2017, 41(3): 721-728. [7] 陈厚合, 鲁华威, 王长江, 等. 抑制直流送端系统暂态过电压的直流和风电控制参数协调优化[J]. 电力自动化设备, 2020, 40(10): 46-55. Chen Houhe, Lu Huawei, Wang Changjiang, et al.Coordinated optimization of HVDC and wind power control parameters for mitigating transient overvoltage on HVDC sending-side system[J]. Electric Power Automation Equipment, 2020, 40(10): 46-55. [8] 王长江, 姜涛, 刘福锁, 等. 基于轨迹灵敏度的暂态过电压两阶段优化控制[J]. 电工技术学报, 2021, 36(9): 1888-1900, 1913. Wang Changjiang, Jiang Tao, Liu Fusuo, et al.Two-stage optimization control of transient overvoltage based on trajectory sensitivity[J]. Transactions of China Electrotechnical Society, 2021, 36(9): 1888-1900, 1913. [9] 岳涵, 邵广惠, 夏德明, 等. 考虑过电压抑制的特高压直流弱送端系统无功控制策略[J]. 电力系统自动化, 2020, 44(15): 172-182. Yue Han, Shao Guanghui, Xia Deming, et al.Reactive power control strategy for UHVDC weak sending-end system considering overvoltage suppression[J]. Automation of Electric Power Systems, 2020, 44(15): 172-182. [10] 谢小荣, 贺静波, 毛航银, 等. “双高”电力系统稳定性的新问题及分类探讨[J]. 中国电机工程学报, 2021, 41(2): 461-475. Xie Xiaorong, He Jingbo, Mao Hangyin, et al.New issues and classification of power system stability with high shares of renewables and power electronics[J]. Proceedings of the CSEE, 2021, 41(2): 461-475. [11] Sajadi A, Kolacinski R M, Clark K, et al.Transient stability analysis for offshore wind power plant integration planning studies—part I: Short-term faults[J]. IEEE Transactions on Industry Applications, 2018, 55(1): 182-192. [12] 张炎, 丁明, 韩平平, 等. 直流闭锁后风电送端系统暂态稳定及控制策略研究[J]. 电工技术学报, 2020, 35(17): 3714-3726. Zhang Yan, Ding Ming, Han Pingping, et al.Study on the transient stability and control schemes of the sending-end system involving wind power after UHVDC block[J]. Transactions of China Electrotechnical Society, 2020, 35(17): 3714-3726. [13] 骆悦, 姚骏, 张田, 等. 大规模风电直流外送系统单极闭锁场景下送端系统协调控制策略[J]. 电工技术学报, 2019, 34(19): 4108-4118. Luo Yue, Yao Jun, Zhang Tian, et al.Coordinated control strategy of large-scale wind power generation sending system under mono-polar block fault[J]. Transactions of China Electrotechnical Society, 2019, 34(19): 4108-4118. [14] 尹纯亚, 李凤婷, 周识远, 等. 基于无功功率短路比的直流闭锁暂态过电压计算方法[J]. 电力系统自动化, 2019, 43(10): 150-157, 161. Yin Chunya, Li Fengting, Zhou Shiyuan, et al.Calculation method of transient overvoltage due to DC blocking based on short circuit ratio of reactive power[J]. Automation of Electric Power Systems, 2019, 43(10): 150-157, 161. [15] 汤涌. 交直流电力系统多时间尺度全过程仿真和建模研究新进展[J]. 电网技术, 2009, 33(16): 1-8. Tang Yong.New progress in research on multi-time scale unified simulation and modeling for AC/DC power systems[J]. Power System Technology, 2009, 33(16): 1-8. [16] 刘文焯, 汤涌, 万磊, 等. 大电网特高压直流系统建模与仿真技术[J]. 电网技术, 2008, 32(22): 1-3, 7. Liu Wenchao, Tang Yong, Wan Lei, et al.Modeling and simulation technologies for large UHVDC power grid[J]. Power System Technology, 2008, 32(22): 1-3, 7. [17] 杨福, 梁军, 牛庆达. 一种适用于交直流互联系统电磁暂态仿真的动态等效方法[J]. 电力系统保护与控制, 2012, 40(16): 70-76. Yang Fu, Liang Jun, Niu Qingda.A dynamic equivalent method for electromagnetic transient simulation of AC/DC interconnected power system[J]. Power System Protection and Control, 2012, 40(16): 70-76. [18] 顾丹珍, 戴海锋, 崔勇, 等. 基于BPA的大规模电力系统工程应用的同调动态等值方法[J]. 水电能源科学, 2019, 37(3): 176-180. Gu Danzhen, Dai Haifeng, Cui Yong, et al.Homologous dynamic equivalence method for large scale power system engineering application based on BPA[J]. Water Resources and Power, 2019, 37(3): 176-180. [19] 徐政, 杨靖萍, 段慧. 一种适用于电磁暂态仿真的等值简约方法[J]. 南方电网技术, 2007(1): 37-40. Xu Zheng, Yang Jingping, Duan Hui.An equivalent reduction method for electromagnetic transient simulation of large-scale power systems[J]. Southern Power System Technology, 2007(1): 37-40. [20] 朱林, 陈达, 张健, 等. 计及特征约束的南方电网主网架动态等值方案[J]. 电力自动化设备, 2019, 39(9): 206-212. Zhu Lin, Chen Da, Zhang Jian, et al.Dynamic equivalence scheme for main grid of China southern power grid considering feature constraints[J]. Electric Power Automation Equipment, 2019, 39(9): 206-212. [21] 楼霞薇, 王威, 王波, 等. 基于WARD等值的电网限流运行方式优化方法[J]. 电力系统保护与控制, 2017, 45(18): 128-136. Lou Xiawei, Wang Wei, Wang Bo, et al.A grid operation mode optimization method for controlling short-circuit current level based on WARD equivalence[J]. Power System Protection and Control, 2017, 45(18): 128-136. [22] 林济铿, 闫贻鹏, 刘涛, 等. 电力系统电磁暂态仿真外部系统等值方法综述[J]. 电力系统自动化, 2012, 36(11): 108-115. Lin Jikeng, Yan Yipeng, Liu Tao, et al.Review on external system equivalent method for electromagnetic transient simulation of power systems[J]. Automation of Electric Power Systems, 2012, 36(11): 108-115. [23] 王刚, 张伯明. 电力系统外网在线动态等值方案[J].电网技术, 2006, 30(19): 21-26. Wang Gang, Zhang Boming.External online dynamic equivalents of power system[J]. Power System Technology, 2006, 30(19): 21-26. [24] Jardim J I, Leite DA Silvaam.A methodology for computing robust dynamic equivalents of large power systems[J]. Electric Power Systems Research, 2017, 143: 513-521. [25] 胡杰, 余贻鑫. 电力系统动态等值参数聚合的实用方法[J]. 电网技术, 2006, 30(24): 26-30. Hu Jie, Yu Yixin, A practical method of parameter aggregation for power system dynamic equivalence[J]. Power System Technology, 2006, 30(24): 26-30. [26] 朱琳, 葛俊, 吴学光, 等. 一种工程实用的电力系统等值方法[J]. 电力自动化设备, 2017, 37(9): 178-184. Zhu Lin, Ge Jun, Wu Xueguang, et al.Power system equivalence for practical engineering[J]. Electric Power Automation Equipment, 2017, 37(9): 178-184. [27] 李明节. 大规模特高压交直流混联电网特性分析与运行控制[J]. 电网技术, 2016, 40(4): 985-991. Li Mingjie.Characteristic analysis and operational control of large-scale hybrid UHV AC/DC power grids[J]. Power System Technology, 2016, 40(4): 985-991. [28] 倪以信, 陈寿松, 张宝霖. 动态电力系统的理论和分析[M]. 北京: 清华大学出版社, 2002. [29] 徐政. 交直流电力系统动态行为分析[M]. 北京: 机械工业出版社, 2004. [30] 孙景强, 郭小江, 张健, 等. 多馈入直流输电系统受端电网动态特性[J]. 电网技术, 2009, 33(4): 57-60, 87. Sun Jingqiang, Guo Xiaojiang, Zhang Jian, et al.Dynamic characteristics of receiving-end of multi-infeed HVDC power transmission system[J]. Power System Technology, 2009, 33(4): 57-60, 87. [31] 黄梅, 万航羽. 在动态仿真中风电场模型的简化[J].电工技术学报, 2009, 24(9): 147-152. Huang Mei, Wan Hangyu.Simplification of wind farm model for dynamic simulation[J]. Transactions of China Electrotechnical Society, 2009, 24(9): 147-152. [32] 张伯明, 陈寿松, 严正. 高等电力网络分析[M]. 北京: 清华大学出版社, 2007. |
|
|
|