|
|
Research on Time-Phased Control Strategy of Urban Rail Ground Hybrid Energy Storage Device Based on Train Operation Status |
Qin Qiangqiang1, Zhang Jiao2, Li Yujie3, Lin Fei1, Yang Zhongping1 |
1. Beijing Jiaotong University School of Electrical Engineering Beijing 100044 China; 2. Beijing Metro Operation Co. Ltd. Metro Operation Technology R& D Center Beijing 102208 China; 3. Beijing Subway Operation Co. Ltd Beijing 100044 China |
|
|
Abstract The ground hybrid energy storage device of urban rail transit takes into account the functions of absorbing the remaining regenerative braking energy of the train and driving the power failure train as a backup power source. Based on the actual operation status of the urban rail transit power supply system, the paper establishes a simulation model of traction power supply system and analyzes the changes of the traction network power flow at different departure intervals of trains. Then a time-phased control strategy of urban rail ground hybrid energy storage device based on train operation status is proposed. The control strategy uses a battery priority response mode when the departure interval is large because the remaining regenerative braking energy and power of the train is large, so that the super capacitor has sufficient capacity to respond to the high power load, avoiding unnecessary starting of the braking resistor; When it is small, the super-capacitor priority response mode is adopted due to the remaining regenerative braking energy and power of the train, which reduces the battery usage capacity to improve the service life of the battery. Using the actual line parameters of the Beijing Subway, the traction power supply simulation platform and the hybrid energy storage test platform were used to simulate and verify the effectiveness of the proposed control strategy. Simulation and experimental results show that this control strategy can effectively improve the ability of hybrid energy storage device to absorb the remaining regenerative braking energy and increase the lifetime of the battery.
|
Received: 01 July 2018
Published: 02 January 2020
|
|
Corresponding Authors:
国家重点研发计划资助项目(2017YFB1201105)
|
|
|
|
[1] Khaligh A, Li Zhihao.Battery, uhracapaeitor, fuel cell, and hybrid energy storage systems for electric, hybrid electric, fuel cell, and plug-in hybrid electric vehicles: state of the art[J]. IEEE Transactions on Vehicular Technology, 2010, 59(6): 2806-2814. [2] Ibrahim H, Ilinca A, Perron J.Energy storage systems characteristics and comparisons[J]. Renewable and Sustainable Energy Reviews, 2008, 12(5): 1221-1250. [3] 诸斐琴, 杨中平, 林飞, 等. 基于加速时间预测的现代有轨电车储能系统能量管理与容量配置优化研究[J]. 电工技术学报, 2017, 32(23): 158-166. Zhu Feiqin, Yang Zhongping, Lin Fei, et al.Research on energy management and capacity allocation optimization of modern tram energy storage system based on acceleration time prediction[J]. Transa- ctions of China Electrotechnical Society, 2017, 32(23): 158-166. [4] 赵亚杰, 夏欢, 王俊兴, 等. 基于动态阈值调节的城轨交通超级电容储能系统控制策略研究[J]. 电工技术学报, 2015, 30(14): 427-433. Zhao Yajie, Xia Huan, Wang Junxing, et al.Research on control strategy of urban rail transit supercapacitor energy storage system based on dynamic threshold adjustment[J]. Transactions of China Electrotechnical Society, 2015, 30(14): 427-433. [5] Dutta O, Saleh M, Mohamed A.HESS in DC rail transit system: optimal sizing and system design[J]. IEEE Transactions on Magnetics, 2017, 43(6): 169-175. [6] 桑丙玉, 陶以彬, 郑高, 等. 超级电容一蓄电池混合储能拓扑结构和控制策略研究[J]. 电力系统保护与控制, 2014, 42(2): l-6. Sang Bingyu, Tao Yibin, Zheng Gao, et al. Supercapacitor-battery hybrid energy storage topology and control strategy[J]. Power System Protection and Control, 2014, 42(2): l-6. [7] 林仕立, 宋文吉, 冯自平, 等. 地铁混合储能系统及其功率动态分配控制方法[J]. 仪器仪表学报, 2016, 37(12): 19-24. Lin Shili, Song Wenji, Feng Ziping, et al.Metro hybrid energy storage system and its power dynamic distribution control method[J]. Chinese Journal of Scientific Instrument, 2016, 37(12): 19-24. [8] 张纯江, 董杰, 刘君, 等. 蓄电池与超级电容混合储能系统的控制策略[J]. 电工技术学报, 2014, 29(4): 335-340. Zhang Chunjiang, Dong Jie, Liu Jun, et al.Control strategy of battery and super capacitor hybrid energy storage system[J]. Transactions of China Electro- technical Society, 2014, 29(4): 335-340. [9] 夏欢, 杨中平, 杨志鸿, 等. 基于列车运行状态的城轨超级电容储能装置控制策略[J]. 电工技术学报, 2017, 32(21): 16-23. Xia Huan, Yang Zhongping, Yang Zhihong, et al.Control strategy of urban rail supercapacitor energy storage device based on train running state[J] Transactions of China Electrotechnical Society, 2017, 32(21): 16-23. [10] Sadakiyo M, Nagaoka N, Ametani A.An optimal operating point control of lithium-ion battery in a power compensator for DC railway system[C]//2007 International Universities Power Engineering Con- ference, Brighton, UK, 2007: 681-686. [11] 胡斯登, 梁梓鹏, 范栋琦, 等. 基于Z源变换器的电动汽车超级电容-电池混合储能系统[J]. 电工技术学报, 2017, 32(8): 247-255. Hu Sideng, Liang Shupeng, Fan Dongqi, et al.Electric vehicle super capacitor-battery hybrid energy storage system based on Z source converter[J]. Transactions of China Electrotechnical Society, 2017, 32(8): 247-255. [12] Ciccarelli F, Pizzo A D, Iannuzzi D.Improvement of energy efficiency in light railway vehicles based on power management control of wayside lithium-ion capacitor storage[J]. IEEE Transactions on Power Electronics, 2013, 29(1): 275-286. [13] 刘诗涵, 周羽生, 许振华, 等. 基于超级电容蓄能的永磁同步海上风电低电压穿越研究[J]. 电力系统保护与控制, 2018, 46(5): 9-15. Liu Shihan, Zhou Yusheng, Xu Zhenhua, et al.Research on low voltage ride-through of permanent magnet synchronous offshore wind power based on super capacitor energy storage[J] Power System Pro- tection and Control, 2018, 46(5): 9-15. [14] Rufer A, Hotellier D, Barrade P.A supercapacitor based energy storage substation for voltage com- pensation in weak transportation networks[J]. IEEE Transactions on Power Delivery, 2003, 19(2): 629-636. [15] 毕恺韬, 孙力, 安群涛, 等. 基于模块化多电平直流变换器的储能系统分布式能量均衡控制策略[J]. 电工技术学报, 2018, 33(16): 3811-3821. Bi Kaitao, Sun Li, An Quntao, et al.Distributed energy balancing control strategy for energy storage system based on modular multilevel DC-DC con- verter[J]. Transactions of China Electrotechnical Society, 2018, 33(16): 3811-3821. |
|
|
|