|
|
Composite Control Strategy of Zero Voltage Switch Angle Tracking and Dynamic Capacitance Compensation Matrix for Wireless Power Transfer |
Li Zheng1,2, Tang Minglei1, Xie Bo1, Zhu Yiding1, Sun Hexu1 |
1. School of Electrical Engineering Hebei University of Science and Technology Shijiazhuang 050018 China; 2. School of Electrical Engineering Yanshan University Qinhuangdao 066004 China |
|
|
Abstract Changing parameters of dynamic wireless power transfer systems can affect power transfer efficiency. This paper proposes a frequency-tracking control strategy for the DWPT system combined with zero voltage switch angle tracking and a dynamic capacitance compensation matrix. A current sensor is used to obtain the phase of the resonant current, and a reference signal generated by the processor is used to measure the phase of the resonant current. The micro-control calculates the size of the compensation capacitor according to the degree of frequency drift, roughly adjusts the natural resonant frequency to 85 kHz, and then automatically tracks the resonant current phase. Firstly, the structure of the wireless power transfer system and the working conditions of constant current and constant voltage charging are analyzed, and the relationship between the output voltage/duty cycle and working frequency is deduced. The output voltage can be adjusted by manipulating the duty cycle D and ω. The working principle of the dynamic capacitance compensation matrix is also analyzed. By adjusting the dynamic capacitance compensation matrix, the resonant frequency of the circuit can be tuned. Next, the operating principle of the phase detection circuit is analyzed, and a new phase detection method is adopted to effectively improve the system's anti-interference capability. The components of the system are introduced, and the working principle of each part of the circuit is explained. Then, a control strategy is proposed combining dynamic capacitance compensation matrix and zero-voltage switching angle tracking. The battery load charging and anti-disturbance are simulated. The results show that the composite control strategy can realize the battery load charging while tracking frequency. Finally, the efficiency of the control method is quantitatively compared with the existing control methods. The proposed method acquires the phase of the high-frequency current by sampling the DC signal derived from the phase detection circuit, greatly reducing the microcontroller's computational workload. The control strategy and system structure proposed in this paper combines the advantages of analog circuits and digital control, which have a high dynamic response to system parameter changes and save processor resources. With precise zero-voltage switching angle control, the system can achieve zero-voltage switching over almost a large load range, and its efficiency reaches up to 91.19% when k =0.25.
|
Received: 11 April 2023
|
|
|
|
|
[1] 薛明, 杨庆新, 章鹏程, 等. 无线电能传输技术应用研究现状与关键问题[J]. 电工技术学报, 2021, 36(8): 1547-1568. Xue Ming, Yang Qingxin, Zhang Pengcheng, et al.Application status and key issues of wireless power transmission technology[J]. Transactions of China Electrotechnical Society, 2021, 36(8): 1547-1568. [2] 杨庆新, 张献, 章鹏程. 电动车智慧无线电能传输云网[J]. 电工技术学报, 2023, 38(1): 1-12. Yang Qingxin, Zhang Xian, Zhang Pengcheng.Intel- ligent wireless power transmission cloud network for electric vehicles[J]. Transactions of China Electro- technical Society, 2023, 38(1): 1-12. [3] 周玮, 蓝嘉豪, 麦瑞坤, 等. 无线充电电动汽车 V2G模式下光储直流微电网能量管理策略[J]. 电工技术学报, 2022, 37(1): 82-91. Zhou Wei, Lan Jiahao, Mai Ruikun, et al.Research on power management strategy of DC microgrid with photovoltaic, energy storage and EV-wireless power transfer in V2G mode[J]. Transactions of China Electrotechnical Society, 2022, 37(1): 82-91. [4] 赵军, 赵毅航, 武志军, 等. 电动汽车无线充电系统对心脏起搏器的电磁兼容与热效应影响[J]. 电工技术学报, 2022, 37(增刊1): 1-10. Zhao Jun, Zhao Yihang, Wu Zhijun, et al.The influence of electric vehicle wireless charging system on electromagnetic compatibility and thermal effect of cardiac pacemaker[J]. Transactions of China Elec- trotechnical Society, 2022, 37(S1): 1-10. [5] 蔡光柱, 杨振, 郑鹏超. 大跨越输电线路巡检机器人系统的设计[J]. 电气技术, 2022, 23(4): 76-81. Cai Guangzhu, Yang Zhen, Zheng Pengchao.Design of inspection robot system for large span transmission line[J]. Electrical Engineering, 2022, 23(4): 76-81. [6] 赵进国, 赵晋斌, 张俊伟, 等. 无线电能传输系统中有源阻抗匹配网络断续电流模式最大效率跟踪研究[J]. 电工技术学报, 2022, 37(1): 24-35. Zhao Jinguo, Zhao Jinbin, Zhang Junwei, et al.Maximum efficiency tracking study of active impe- dance matching network discontinous current mode in wireless power transfer system[J]. Transactions of China Electrotechnical Society, 2022, 37(1): 24-35. [7] 陈志鑫, 张献, 沙琳, 等. 基于频率调节的电动汽车无线充电互操作性提升方法研究[J]. 电工技术学报, 2023, 38(5): 1237-1247. Chen Zhixin, Zhang Xian, Sha Lin, et al.Research on improving interoperability of electric vehicle wireless power transfer based on frequency adjustment[J]. Transactions of China Electrotechnical Society, 2023, 38(5): 1237-1247. [8] 田勇, 杨昊, 胡超, 等. 基于毫米波雷达的电动汽车无线充电运动异物检测与跟踪[J]. 电工技术学报, 2023, 38(2): 297-308. Tian Yong, Yang Hao, Hu Chao, et al.Moving foreign object detection and track for electric vehicle wireless charging based on millimeter-wave radar[J]. Transactions of China Electrotechnical Society, 2023, 38(2): 297-308. [9] 陈伟华, 宋邑玮, 闫孝姮. 心脏起搏器谐振式无线供能LCL-LCL的集成[J]. 电工技术学报, 2022, 37(12): 2924-2935. Chen Weihua, Song Yiwei, Yan Xiaoheng.Integr- ation of resonant wireless energy supply LCL-LCL for cardiac pacemaker[J]. Transactions of China Electrotechnical Society, 2022, 37(12): 2924-2935. [10] 刘宇鑫, 高飞, 刘鑫, 等. 深海无人航行器双向无线充电系统的涡流损耗分析与效率优化[J/OL]. 电工技术学报, https://doi.org/10.19595/j.cnki.1000- 6753.tces.231122. Liu Yuxin, Gao Fei, Liu Xin, et al. Analysis of eddy current loss and efficiency optimization for bidi- rectional underwater wireless power transfer of AUVs[J/OL]. Transactions of China Electrotechnical Society, https://doi.org/10.19595/j.cnki.1000-6753.tces. 231122. [11] 冯鸿运, 林飞, 杨中平, 等. 应用于自动导引小车无线充电系统的导航与供电一体化线圈研究[J/OL]. 电工技术学报, https://doi.org/10.19595/j.cnki.1000- 6753.tces.230831. Feng Hongyun, Lin Fei, Yang Zhongping, et al. A research on a navigation and power supply integrated coil for automatic guided vehicle wireless power transfer system[J/OL]. Transactions of China Elec- trotechnical Society, https://doi.org/10.19595/j.cnki.1000-6753.tces.230831. [12] 谢诗云, 杨奕, 李恋, 等. 基于双极性耦合磁场调控的高抗偏移偏转无线电能传输系统[J]. 电工技术学报, 2023, 38(18): 4838-4852. Xie Shiyun, Yang Yi, Li Lian, et al.Wireless power transfer system with high misalignment tolerance based on bipolar coupling magnetic-field control[J]. Transactions of China Electrotechnical Society, 2023, 38(18): 4838-4852. [13] 贾金亮, 闫晓强. 磁耦合谐振式无线电能传输特性研究动态[J]. 电工技术学报, 2020, 35(20): 4217-4231. Jia Jinliang, Yan Xiaoqiang.Research tends of magnetic coupling resonant wireless power transfer characteristics[J]. Transactions of China Electro- technical Society, 2020, 35(20): 4217-4231. [14] 陆远方, 黎祎阳, 杨斌, 等. 考虑线圈参数变化的SS型动态无线电能传输系统参数优化设计方法[J].电工技术学报, 2022, 37(18): 4537-4547. Lu Yuanfang, Li Yiyang, Yang Bin, et al.Parameter design method for SS compensated dynamic wireless power transfer system considering coils' parameters variations[J]. Transactions of China Electrotechnical Society, 2022, 37(18): 4537-4547. [15] Waffenschmidt E.Dynamic resonant matching method for a wireless power transmission receiver[J]. IEEE Transactions on Power Electronics, 2015, 30(11): 6070-6077. [16] 刘帼巾, 李义鑫, 崔玉龙, 等. 基于FPGA的磁耦合谐振式无线电能传输频率跟踪控制[J]. 电工技术学报, 2018, 33(14): 3185-3193. Liu Guojin, Li Yixin, Cui Yulong, et al.Frequency tracking control of wireless power transfer via magnetic resonance coupling based on FPGA[J]. Transactions of China Electrotechnical Society, 2018, 33(14): 3185-3193. [17] 吴丽君, 李冠西, 张朱浩伯, 等. 一种具有恒流恒压输出自切换特性的电动汽车无线电能传输系统拓扑[J]. 电工技术学报, 2020, 35(18): 3781-3790. Wu Lijun, Li Guanxi, Zhang Zhuhaobo, et al.A wireless power transfer system topology with auto- matic switching characteristics of constant current and constant voltage output for electric vehicle charging[J]. Transactions of China Electrotechnical Society, 2020, 35(18): 3781-3790. [18] Zhong Wenxing, Hui S Y R. Maximum energy efficiency tracking for wireless power transfer systems[J]. IEEE Transactions on Power Electronics, 2015, 30(7): 4025-4034. [19] Zheng Zhongjiu, Wang Ning, Ahmed S.Adaptive frequency tracking control with fuzzy PI compound controller for magnetically coupled resonant wireless power transfer[J]. International Journal of Fuzzy Systems, 2021, 23(6): 1890-1903. [20] Jiang Yongbin, Wang Laili, Wang Yue, et al.Phase- locked loop combined with chained trigger mode used for impedance matching in wireless high power transfer[J]. IEEE Transactions on Power Electronics, 2020, 35(4): 4272-4285. [21] Tan Ping'an, He Haibing, Gao Xieping.A frequency- tracking method based on a SOGI-PLL for wireless power transfer systems to assure operation in the resonant state[J]. Journal of Power Electronics, 2016, 16(3): 1056-1066. [22] 黄程, 陆益民. 磁谐振无线电能传输系统的频率跟踪失谐控制[J]. 电工技术学报, 2019, 34(15): 3102-3111. Huang Cheng, Lu Yimin.Frequency tracking detuning control of magnetic resonant wireless power transfer system[J]. Transactions of China Electro- technical Society, 2019, 34(15): 3102-3111. [23] Wong C S, Chan Y P, Cao Lingling, et al.A single-stage dynamically compensated IPT converter with unity power factor and constant output voltage under varying coupling condition[J]. IEEE Transa- ctions on Power Electronics, 2020, 35(10): 10121-10136. [24] Tian Jianlong, Hu A P, Nguang S K.Secondary side output voltage stabilization of an IPT system by tuning/detuning through a serial tuned DC voltage- controlled variable capacitor[J]. Journal of Power Electronics, 2017, 17(2): 570-578. [25] 杨鸣凯, 麦瑞坤, 徐丹露, 等. 采用同轴相位检测线圈的感应无线电能传输系统谐振调节技术[J]. 中国电机工程学报, 2017, 37(6): 1867-1875. Yang Mingkai, Mai Ruikun, Xu Danlu, et al.Coaxial phase detection coil and its application for dynamic resonance tuning in inductive wireless power transfer systems[J]. Proceedings of the CSEE, 2017, 37(6): 1867-1875. [26] 麦瑞坤, 马晓晴, 陆立文, 等. 一种采用测量线圈技术的感应电能传输系统调频调谐方法研究[J]. 中国电机工程学报, 2017, 37(17): 5125-5133, 5232. Mai Ruikun, Ma Xiaoqing, Lu Liwen, et al.A measurement coil based receiver's resonant frequency tracking technique for inductive power transfer systems[J]. Proceedings of the CSEE, 2017, 37(17): 5125-5133, 5232. [27] Li Kun, Zhao Haibo, Lü Lianrong, et al.Influence of coil radius, distance and working frequency on efficiency in two-coil magnetically coupled resonant wireless power transmission system[C]//2019 IEEE International Conference on Mechatronics and Auto- mation (ICMA), Tianjin, China, 2019: 2121-2125. [28] Lee H Y, Park G S.Analysis of the resonance characteristics by a variation of coil distance in magnetic resonant wireless power transmission[J]. IEEE Transactions on Magnetics, 2018, 54(11): 1-4. [29] 吴旭升, 李达, 高键鑫, 等. 基于电池负载的无线电能传输技术的分析[J]. 海军工程大学学报, 2022, 34(2): 40-49. Wu Xusheng, Li Da, Gao Jianxin, et al.Analysis of wireless power transmission based on battery load[J]. Journal of Naval University of Engineering, 2022, 34(2): 40-49. [30] Li Weihan, Zhang Qianfan, Cui Chao, et al.A self- tuning S/S compensation WPT system without parameter recognition[J]. IEEE Transactions on Indu- strial Electronics, 2022, 69(7): 6741-6750. [31] Mishima T, Morita E.High-frequency bridgeless rectifier based ZVS multiresonant converter for indu- ctive power transfer featuring high-voltage GaN- HFET[J]. IEEE Transactions on Industrial Electronics, 2017, 64(11): 9155-9164. |
|
|
|