|
|
Analysis and Experiment of Eddy Current Loss of Axial Flux Permanent Magnet Motor Based on Rotor Segment Optimization |
Liu Xiping1, Zhu Zhiguo1, Chen Dong2, Shi Zihao1, Sun Guojian2 |
1. School of Electrical Engineering and Automation Jiangxi University of Science and Technology Ganzhou 341000 China; 2. Hangzhou Zhonghao Electric Technology Co. Ltd Hangzhou 310000 China |
|
|
Abstract Axial flux permanent magnet motor (AFPM) has the advantages of short axial length, lightweight, high power density, and high torque density, which is widely used in electric vehicles, new energy power generation, and other fields. However, due to structural limitations, the heat dissipation of the rotor is difficult, and the eddy current loss in the permanent magnet (PM) can increase the temperature of the rotor, resulting in irreversible demagnetization risk of PM and affecting the normal operation of the motor. Therefore, three new optimization methods for the partial segmentation of PM are proposed based on the complete segmentation of PM. Firstly, the mathematical model of eddy current loss of PM of AFPM is derived. Extending the eddy current path on the surface of PM and reducing the surface area of PM can effectively reduce the eddy current loss, which provides a theoretical basis for the proposed optimization method. Secondly, the motor's finite element (FE) analysis model is established using the FE software. The current density distribution, eddy current loss, and anti-demagnetization ability of the PM before and after optimization are simulated. The results show that the proposed optimization method significantly reduces the eddy current loss and has little influence on the magnetic properties of the PM. Simulation results are consistent with the theoretical analysis. Besides, the appropriate number of segments and the reserved size of the PM are obtained. Then, the cutting gap of the optimized PM is modeled separately and filled with epoxy resin glue. Moreover, the mechanical strength of the PM is calculated by the FE method. Accordingly, the mechanical strength of the PM is improved, and the stress generated by the centrifugal force and the unbalanced magnetic tension do not destroy the mechanical structure of the optimized PM. Finally, the motor efficiency, PM magnetic properties, and PM temperature rise are tested through a prototype, which verifies the effectiveness of the proposed optimization method and the accuracy of theoretical analysis. The following conclusions can be drawn: (1) The optimization effects of the intermediate retention method (IRM) and the alternating cutting method (ACM) of the PM in AFPM are consistent. Both can effectively reduce PM temperature rise, better than the surface cutting method (SCM) and similar to the complete segmentation method (CSM). Under the rated working conditions and the same number of partial segments, compared with the original PM, the reduction ratio of the average eddy current loss of IRM and ACM is about 36.8%, 13% higher than that of SCM, and 9% worse than that of the CSM. Therefore, IRM and ACM are preferred. (2) The eddy current loss of PM decreases with the number of partial segments, and the eddy current loss increases with the increase of the retention size. (3) The proposed optimization method does not affect the anti-demagnetization ability of PM at high temperatures and high currents, which has little effect on the magnetic properties of PM. (4) The epoxy resin filled in the PM gap can improve the mechanical strength of PM, and the maximum equivalent stress is far less than the yield strength. The stresses generated by centrifugal and unbalanced magnetic forces do not destroy the PM mechanical structure.
|
Received: 15 May 2023
|
|
|
|
|
[1] 黄允凯, 周涛, 董剑宁, 等. 轴向永磁电机及其研究发展综述[J]. 中国电机工程学报, 2015, 35(1): 192-205. Huang Yunkai, Zhou Tao, Dong Jianning, et al.An overview on developments and researches of axial flux permanent magnet machines[J]. Proceedings of the CSEE, 2015, 35(1): 192-205. [2] 唐任远. 现代永磁电机: 理论与设计[M]. 北京: 机械工业出版社, 1997. [3] 鲍晓华, 刘佶炜, 孙跃, 等. 低速大转矩永磁直驱电机研究综述与展望[J]. 电工技术学报, 2019, 34(6): 1148-1160. Bao Xiaohua, Liu Jiwei, Sun Yue, et al.Review and prospect of low-speed high-torque permanent magnet machines[J]. Transactions of China Electrotechnical Society, 2019, 34(6): 1148-1160. [4] 王晓光, 尹浩, 余仁伟. 轴向磁通无铁心永磁电机多层矩形扁线绕组涡流损耗解析计算及优化[J]. 电工技术学报, 2023, 38(12): 3130-3140. Wang Xiaoguang, Yin Hao, Yu Renwei.Analytical calculation and parameter optimization of eddy current loss for coreless axial flux permanent magnet synchronous machine with multilayer flat wire winding[J]. Transactions of China Electrotechnical Society, 2023, 38(12): 3130-3140. [5] 张文晶, 徐衍亮, 李树才. 新型盘式横向磁通永磁无刷电机的结构原理及设计优化[J]. 电工技术学报, 2021, 36(14): 2979-2988. Zhang Wenjing, Xu Yanliang, Li Shucai.Structure principle and optimization of a novel disk transverse flux permanent magnet brushless motor[J]. Transa- ctions of China Electrotechnical Society, 2021, 36(14): 2979-2988. [6] Peng Bing, Zhuang Xiaoyu.Design and performance analysis of axial flux permanent magnet machines with double-stator dislocation using a combined wye-delta connection[J]. CES Transactions on Elec- trical Machines and Systems, 2022, 6(1): 53-59. [7] 赵纪龙, 逯卓林, 韩青峰, 等. 轴向磁通永磁电机系统及关键技术前沿发展综述[J]. 中国电机工程学报, 2022, 42(7): 2744-2765. Zhao Jilong, Lu Zhuolin, Han Qingfeng, et al.An overview on development of axial flux permanent magnet motor system and the key technology[J]. Proceedings of the CSEE, 2022, 42(7): 2744-2765. [8] 林明耀, 乐伟, 林克曼, 等. 轴向永磁电机热设计及其研究发展综述[J]. 中国电机工程学报, 2021, 41(6): 1914-1929. Lin Mingyao, Le Wei, Lin Keman, et al.Overview on research and development of thermal design methods of axial flux permanent magnet machines[J]. Pro- ceedings of the CSEE, 2021, 41(6): 1914-1929. [9] 陈起旭, 梁得亮, 徐俊, 等. 盘式交流永磁同步电机温升影响因素研究[J]. 电机与控制学报, 2018, 22(3): 33-41. Chen Qixu, Liang Deliang, Xu Jun, et al.Influence factor analysis of disc-type AC permanent magnet synchronous motor temperature rise[J]. Electric Machines and Control, 2018, 22(3): 33-41. [10] 孙明灿, 唐任远, 韩雪岩, 等. 高频非晶合金轴向磁通永磁电机不同冷却方案温度场分析[J]. 电机与控制学报, 2018, 22(2): 1-8, 23. Sun Mingcan, Tang Renyuan, Han Xueyan, et al.Temperature field analysis of a high frequency amorphous alloy axial flux permanent magnet machine with different cooling schemes[J]. Electric Machines and Control, 2018, 22(2): 1-8, 23. [11] 陈丽香, 解志霖, 王雪斌. 低速大转矩永磁电机的转子散热问题[J]. 电工技术学报, 2017, 32(7): 40-48. Chen Lixiang, Xie Zhilin, Wang Xuebin.The rotor heat dissipation problem of low speed and high torque permanent magnet motor[J]. Transactions of China Electrotechnical Society, 2017, 32(7): 40-48. [12] 陈萍, 唐任远, 佟文明, 等. 高功率密度永磁同步电机永磁体涡流损耗分布规律及其影响[J]. 电工技术学报, 2015, 30(6): 1-9. Chen Ping, Tang Renyuan, Tong Wenming, et al.Permanent magnet eddy current loss and its influence of high power density permanent magnet synchronous motor[J]. Transactions of China Electrotechnical Society, 2015, 30(6): 1-9. [13] 佟文明, 朱晓锋, 贾建国, 等. 时间谐波对永磁同步电机损耗的影响规律[J]. 电工技术学报, 2015, 30(6): 60-69. Tong Wenming, Zhu Xiaofeng, Jia Jianguo, et al.Influence law of additional losses induced by time harmonic in permanent magnet synchronous motors[J]. Transactions of China Electrotechnical Society, 2015, 30(6): 60-69. [14] Pyrhonen J, Jussila H, Alexandrova Y, et al.Harmonic loss calculation in rotor surface permanent magnets-new analytic approach[J]. IEEE Transactions on Magnetics, 2012, 48(8): 2358-2366. [15] Rodríguez A L, Gómez D J, Villar I, et al.New analytical method for PMSM magnet losses esti- mation based on Fourier series[C]//2014 International Conference on Electrical Machines (ICEM), Berlin, Germany, 2014: 1314-1320. [16] 陈浈斐, 邢宁, 马宏忠, 等. 分数槽永磁电机永磁体谐波涡流损耗建模与分析[J]. 电工技术学报, 2022, 37(14): 3514-3527. Chen Zhenfei, Xing Ning, Ma Hongzhong, et al.Analytical modeling and analysis of magnet harmonic loss in fractional slot permanent-magnet machines[J]. Transactions of China Electrotechnical Society, 2022, 37(14): 3514-3527. [17] 陈萍, 唐任远, 韩雪岩, 等. 抑制永磁体局部温升最高点的不均匀轴向分段技术[J]. 电机与控制学报, 2016, 20(7): 1-7. Chen Ping, Tang Renyuan, Han Xueyan, et al.An unevenly axial segmented technology for suppressing permanent magnet local maximum temperature rising[J]. Electric Machines and Control, 2016, 20(7): 1-7. [18] 佟文明, 侯明君, 孙鲁, 等. 基于精确子域模型的带护套转子高速永磁电机转子涡流损耗解析方法[J]. 电工技术学报, 2022, 37(16): 4047-4059. Tong Wenming, Hou Mingjun, Sun Lu, et al.Analytical method of rotor eddy current loss for high-speed surface-mounted permanent magnet motor with rotor retaining sleeve[J]. Transactions of China Electrotechnical Society, 2022, 37(16): 4047-4059. [19] 骆凯传, 师蔚, 张舟云. 基于温度实验的永磁同步电机损耗分离方法[J]. 电工技术学报, 2022, 37(16): 4060-4073. Luo Kaichuan, Shi Wei, Zhang Zhouyun.Method of loss separation of permanent magnet synchronous motor based on temperature experiment[J]. Transa- ctions of China Electrotechnical Society, 2022, 37(16): 4060-4073. [20] Chen Qixu, Liang Deliang, Jia Shaofeng, et al.Analysis of multi-phase and multi-layer factional-slot concentrated-winding on PM eddy current loss considering axial segmentation and load operation[J]. IEEE Transactions on Magnetics, 2018, 54(11): 1-6. [21] 张磊, 高春侠. 永磁同步电机磁钢涡流损耗模型及其衡量指标[J]. 电机与控制学报, 2013, 17(7): 46-53. Zhang Lei, Gao Chunxia.Eddy-current loss model and index for magnets of permanent magnet syn- chronous motors[J]. Electric Machines and Control, 2013, 17(7): 46-53. [22] 唐守杰. 车用永磁电机转子涡流损耗研究与优化[D]. 上海: 上海电机学院, 2016. [23] 曹君慈, 周柏宇, 李栋, 等. 不同磁极拓扑结构的轴向磁通永磁同步电机传热的研究[J]. 电机与控制学报, 2022, 26(5): 26-36. Cao Junci, Zhou Boyu, Li Dong, et al.Heat transfer of axial flux permanent magnet motor with different magnetic pole topologies[J]. Electric Machines and Control, 2022, 26(5): 26-36. [24] 刘福贵, 张建宇, 赵志刚, 等. 盘式永磁同步电机永磁体涡流损耗研究[J]. 电机与控制应用, 2017, 44(7): 13-19. Liu Fugui, Zhang Jianyu, Zhao Zhigang, et al.Study on eddy current loss of permanent magnet for disc permanent magnet synchronous motor[J]. Electric Machines & Control Application, 2017, 44(7): 13-19. [25] Wang Youhua, Ma Jinguang, Liu Chengcheng, et al.Reduction of magnet eddy current loss in PMSM by using partial magnet segment method[J]. IEEE Transactions on Magnetics, 2019, 55(7): 1-5. [26] Huang Qi, Luo Ling, Zhu Liwei.Design and research of axial flux permanent magnet motor for electric vehicle[C]//2019 IEEE 3rd International Electrical and Energy Conference (CIEEC), Beijing, China, 2020: 1918-1923. [27] 倪光正. 工程电磁场原理[M]. 北京: 高等教育出版社, 2002. [28] 程明, 韩鹏, 杜怿. 电机气隙磁场调制统一理论及应用[M]. 北京: 机械工业出版社, 2021. |
|
|
|