Progress of Magnetic Induction Intensity Measurement Techniques in the Pulsed High Magnetic Field
Wei Wenqi1,2, Zhang Shaozhe1,2, Xie Jianfeng1,2, Han Xiaotao1,2
1. Wuhan National High Magnetic Field Center Huazhong University of Science and Technology Wuhan 430074 China; 2. State Key Laboratory of Advanced Electromagnetic Technology School of Electrical and Electronic Engineering Huazhong University of Science and Technology Wuhan 430074 China
Abstract:The pulsed high magnetic field is one of the essential tools in modern scientific research. Accurate measurement of the magnetic induction intensity in the pulsed high magnetic field plays a pivotal role in the development of pulsed high magnetic field technology and related scientific studies. However, the pulsed high magnetic field has characteristics such as high field strength, short durations, and limited measurement volumes, which pose significant challenges for achieving accurate measurement of the magnetic induction intensity in the pulsed high magnetic field. This work introduced recent progress of various magnetic induction intensity measurement techniques in the pulsed high magnetic field, including the induction coil method, magneto-optical rotation method, Hall effect method, magnetoresistance effect method, and magnetic resonance method. Their sensing characteristics, measurement system structures, and unique challenges and solutions in the pulsed high magnetic field were summarized. The induction coil method is one of the most commonly used measurement techniques. In recent years, additional attention has been given to issues such as insulation protection, sensor reinforcement, and frequency response characteristics. The magneto-optical rotation method is widely used in the destructive pulsed magnetic field. However, there is currently a lack of magneto-optical materials that are both less prone to saturation in the high field and have large Verdet constants. Measurement methods based on the Hall effect or magnetoresistance effect have an advantage in that their sensors have a small volume, making it easy to measure the magnetic field near physical experiment samples or the spatial distribution of the target magnetic field. Various solutions have been developed to address the loop effect issues that arise from the coupling between the measurement circuit and the pulsed magnetic field. Magnetic resonance methods are currently the most accurate techniques for measuring and calibrating the magnetic field. Various principles of magnetic resonance phenomena, including nuclear magnetic resonance, electron spin resonance, and cyclotron resonance, are developed and can be employed to measure the pulsed high magnetic field. Furthermore, we also presented calibration methods for the magnetic induction intensity measurement in the pulsed high magnetic field, such as the standard probe method and standard magnetic field method. The standard probe method currently mainly utilizes known measurement results such as the magnetic field phase transition effect of MnF2 single crystal and the quantum oscillation effect of pure copper metal as the standard probe. The standard magnetic field method is mainly used for calibrating probes with good linearity such as the induction coil, and can evaluate the frequency response characteristics of the probes. Finally, a summary and outlook of the development of magnetic induction intensity measurement techniques in the pulsed high magnetic field were given.
魏文琦, 张绍哲, 谢剑峰, 韩小涛. 脉冲强磁场磁感应强度测量技术研究进展[J]. 电工技术学报, 2024, 39(23): 7291-7308.
Wei Wenqi, Zhang Shaozhe, Xie Jianfeng, Han Xiaotao. Progress of Magnetic Induction Intensity Measurement Techniques in the Pulsed High Magnetic Field. Transactions of China Electrotechnical Society, 2024, 39(23): 7291-7308.
[1] National Research Council (U.S.). High Magnetic Field Science and Its Application in the United States: Current Status and Future Directions[M]. Washington D. C.: The National Academies Press, 2013. [2] Battesti R, Beard J, Böser S, et al.High magnetic fields for fundamental physics[J]. Physics Reports, 2018, 765: 1-39. [3] 韩小涛, 张绍哲, 魏文琦, 等. 平顶脉冲强磁场技术及其应用[J]. 电工技术学报, 2022, 37(19): 5021-5034. Han Xiaotao, Zhang Shaozhe, Wei Wenqi, et al.Flat-top pulsed high magnetic field technology and its application[J]. Transactions of China Electrotechnical Society, 2022, 37(19): 5021-5034. [4] 李亮, 涂章, 李锐, 等. 大型永磁风力发电机整体充磁系统设计及应用[J]. 电工技术学报, 2023, 38(24): 6596-6608. Li Liang, Tu Zhang, Li Rui, et al.Design and application of the post assembly magnetization system for large permanent magnet wind generators[J]. Transactions of China Electrotechnical Society, 2023, 38(24): 6596-6608. [5] 熊奇, 邱爽, 李彦昕, 等. 组合式电磁成形技术研究进展[J]. 电工技术学报, 2024, 39(9): 2710-2729. Xiong Qi, Qiu Shuang, Li Yanxin, et al.Research progress of combined electromagnetic forming technology[J]. Transactions of China Electro-technical Society, 2024, 39(9): 2710-2729. [6] Sims J R, Rickel D G, Swenson C A, et al.Assembly, commissioning and operation of the NHMFL 100 Tesla multi-pulse magnet system[J]. IEEE Transactions on Applied Superconductivity, 2008, 18(2): 587-591. [7] Jaime M, Daou R, Crooker S, et al.Magnetostriction and magnetic texture to 100.75 Tesla in frustrated SrCu2(BO3)2[J]. Proc Natl Acad Sci USA, 2012, 109(31): 12404-12407. [8] Boyko B A, Bykov A I, Dolotenko M I, et al.More than 20 Mg magnetic field generation in the cascade magnetocumulative Mc-1 generator[C]//Megagauss Magnetic Field Generation, Its Application to Science and Ultra-High Pulsed-Power Technology, Tallahassee, Florida, USA, 2004: 61-66. [9] Nakamura D, Ikeda A, Sawabe H, et al.Record indoor magnetic field of 1200 T generated by electromagnetic flux-compression[J]. The Review of Scientific Instruments, 2018, 89(9): 095106. [10] Xie Jianfeng, Zhang Shaozhe, Shi Jiangtao, et al.Realisation of the reconfigurable pulsed high magnetic field facility and its scientific application at Wuhan National Pulsed High Magnetic Field Centre[J]. High Voltage, 2023, 8(5): 898-906. [11] Wei Wenqi, Liu Qinying, Yuan Le, et al.Nuclear magnetic resonance measurements in high flat-top pulsed magnetic field up to 40 T at WHMFC[J]. IEEE Transactions on Instrumentation and Measurement, 2023, 72: 6004309. [12] 张绍哲, 魏文琦, 樊俊显, 等. 基于双电容器耦合和线性补偿的高稳定度平顶脉冲强磁场调控系统分析与设计[J]. 电工技术学报, 2024, 39(2): 303-312. Zhang Shaozhe, Wei Wenqi, Fan Junxian, et al.Analysis and design of a high-stability flat-top pulsed magnetic field based on the coupled double capacitor bank circuits and the linear compensation[J]. Transactions of China Electrotechnical Society, 2024, 39(2): 303-312. [13] Portugall O, Krämer S, Skourski Y.Magnetic fields and measurements[M]//Coey J M D, Parkin S S. Handbook of Magnetism and Magnetic Materials. Cham: Springer, 2021: 1083-1152. [14] Tumanski S.Induction coil sensors-a review[J]. Measurement Science and Technology, 2007, 18(3): R31-R46. [15] 韩文杰, 陈庚, 秦斌, 等. 基于PCB方案的多极磁铁谐波测量系统设计与实现[J]. 电工技术学报, 2022, 37(19): 5035-5043. Han Wenjie, Chen Geng, Qin Bin, et al.Design and implementation of a harmonic coil field measurement system for multipole magnets based on PCB scheme[J]. Transactions of China Electrotechnical Society, 2022, 37(19): 5035-5043. [16] Lu Y, Mitsuda C, Takaki H, et al.Precise pulsed magnetic field mapping using a compact pick-up probe for a pulsed sextupole magnet[J]. The Review of Scientific Instruments, 2022, 93(12): 123306. [17] Grossinger R.Pulsed fields: generation, magnetometry and application[J]. Journal of Physics D: Applied Physics, 1982, 15(9): 1545-1608. [18] Nakamura D, Sawabe H, Matsuda Y H, et al.Precise measurement of a magnetic field generated by the electromagnetic flux compression technique[J]. The Review of Scientific Instruments, 2013, 84(4): 044702. [19] Gennadiev N N, Demichev V F, Levit P A.Production and measurement of megagauss magnetic fields in single-turn coils[M]//Turchi P J. Megagauss Physics and Technology. Boston, MA: Springer, 1980: 27-36. [20] Bose S, Kaur M, Barada K K, et al.Understanding the working of a B-dot probe[J]. European Journal of Physics, 2019, 40(1): 015803. [21] Miura N, Kido G, Herlach F.Measurements in pulsed high magnetic fields[M]//Herlach F, Miura N. High Magnetic Fields: Science and Technology-Volume 1: Magnet Technology and Experimental Techniques. Singapore: World Scientific, 2003: 285-316. [22] Nakao K, Herlach F, Goto T, et al.A laboratory instrument for generating magnetic fields over 200 T with single turn coils[J]. Journal of Physics E: Scientific Instruments, 1985, 18(12): 1018-1026. [23] Veeser L R, Rodriguez P J, Marshall B R, et al.Optical magnetic field diagnostics for the MC1 flux compression generator experiments[C]//Digest of Technical Papers. Tenth IEEE International Pulsed Power Conference, Albuquerque, NM, USA, 1995: 1058-1062. [24] Nakamura D, Ikeda A, Sawabe H, et al.Record indoor magnetic field of 1200 T generated by electromagnetic flux-compression[J]. The Review of Scientific Instruments, 2018, 89(9): 095106. [25] Dey P, Shukla R, Venkateswarlu D.High magnetic field measurement utilizing Faraday rotation in SF11 glass in simplified diagnostics[J]. Applied Optics, 2017, 56(10): 2873-2877. [26] Zhang Jue, Zhao Xincai, Chen Guanghua, et al.Dual-channel Faraday rotation measurement for pulsed magnetic field[J]. The Review of Scientific Instruments, 2021, 92(10): 105004. [27] von Ortenberg M, Puhlmann N, Stolpe I, et al. The Humboldt high magnetic field center at Berlin[J]. Physica B: Condensed Matter, 2001, 294: 568-573. [28] Druzhinin V V, Tatsenko O M, Bykov A I, et al.Nonlinear Faraday effect in CdS semiconductor in an ultrahigh magnetic field[J]. Physica B: Condensed Matter, 1995, 211(1/2/3/4): 392-395. [29] Williams P A, Rose A H, Day G W, et al.Temperature dependence of the Verdet constant in several diamagnetic glasses[J]. Applied Optics, 1991, 30(10): 1176-1178. [30] Balevičius S, Žurauskienė N, Stankevič V, et al.CMR-B-scalar sensor application for high magnetic field measurement in nondestructive pulsed magnets[J]. IEEE Transactions on Magnetics, 2013, 49(11): 5480-5484. [31] Stankevič T, Medišauskas L, Stankevič V, et al.Pulsed magnetic field measurement system based on colossal magnetoresistance-B-scalar sensors for railgun investigation[J]. The Review of Scientific Instruments, 2014, 85(4): 044704. [32] Žurauskienė N.Engineering of advanced materials for high magnetic field sensing: a review[J]. Sensors, 2023, 23(6): 2939. [33] Soika A K, Sologub I O.Measurements of strong pulsed magnetic fields by Hall effect devices[J]. Instruments and Experimental Techniques, 2010, 53(1): 122-123. [34] Mironov O A, Myronov M, Durov S, et al.Microminiature Hall probes based on n-InSb(Sn)/i-GaAs heterostructure for pulsed magnetic field applications up to 52 T[J]. Physica B: Condensed Matter, 2004, 346: 548-552. [35] Mironov O A, Zherlitsyn S, Uhlarz M, et al.Microminiature hall probes for applications at pulsed magnetic fields up to 87 Tesla[J]. Journal of Low Temperature Physics, 2010, 159(1): 315-318. [36] Balevičius S, Žurauskienė N, Stankevič V, et al.Hand-held magnetic field meter based on colossal magnetoresistance-B-scalar sensor[J]. IEEE Transactions on Instrumentation and Measurement, 2020, 69(6): 2808-2816. [37] Žurauskienė N, Keršulis S, Medišauskas L, et al.Investigation of magnetoresistance and its anisotropy of thin polycrystalline La0.83Sr0.17MnO3 Films in high pulsed magnetic fields[J]. Acta Physica Polonica A, 2011, 119(2): 186-188. [38] Balevičius S, Žurauskienė N, Stankevič V, et al.Nanostructured thin manganite films in megagauss magnetic field[J]. Applied Physics Letters, 2012, 101(9): 092407. [39] Žurauskienė N, Balevičius S, Pavilonis D, et al.Magnetoresistance relaxation in thin La-Sr-Mn-O films exposed to high-pulsed magnetic fields[J]. IEEE Transactions on Plasma Science, 2013, 41(10): 2830-2835. [40] Žurauskienė N, Pavilonis D, Balevičius S, et al.Fast resistance relaxation in nanostructured La-Ca-Mn-O films in pulsed magnetic fields[J]. IEEE Transactions on Plasma Science, 2015, 43(10): 3445-3450. [41] Balevičius S, Žurauskienė N, Stankevič V, et al.High-frequency CMR-B-scalar sensor for pulsed magnetic field measurement[J]. IEEE Transactions on Plasma Science, 2013, 41(10): 2885-2889. [42] Žurauskienė N, Rudokas V, Keršulis S, et al.Magnetoresistance and its relaxation of nanostructured La-Sr-Mn-Co-O films: Application for low temperature magnetic sensors[J]. Journal of Magnetism and Magnetic Materials, 2021, 539: 168340. [43] Stankevič V, Keršulis S, Dilys J, et al.Measurement system for short-pulsed magnetic fields[J]. Sensors, 2023, 23(3): 1435. [44] Lukose R, Žurauskienė N, Stankevič V, et al.Room temperature Co-doped manganite/graphene sensor operating at high pulsed magnetic fields[J]. Scientific Reports, 2019, 9: 9497. [45] Stankevič V, Šimkevičius Č, Keršulis S, et al.Improvement in the long-term stability of parameters of encapsulated magnetic field sensors based on LaSrMnO thin films[J]. Sensors and Actuators A: Physical, 2015, 228: 112-117. [46] Žurauskienė N, Rudokas V, Klimantavičius J, et al.Multistep accelerated aging of magnetic field sensors based on nanostructured La-Sr-Mn-O thin films[J]. IEEE Transactions on Plasma Science, 2017, 45(10): 2787-2793. [47] Husmann A, Betts J B, Boebinger G S, et al.Megagauss sensors[J]. Nature, 2002, 417(6887): 421-424. [48] Hu Jingshi, Rosenbaum T F.Classical and quantum routes to linear magnetoresistance[J]. Nature Materials, 2008, 7(9): 697-700. [49] Kisslinger F, Ott C, Heide C, et al.Linear magnetoresistance in mosaic-like bilayergraphene[J]. Nature Physics, 2015, 11: 650-653. [50] Žurauskienė N, Balevičius S, Stankevič V, et al.B-scalar sensor using CMR effect in thin polycrystalline manganite films[J]. IEEE Transactions on Plasma Science, 2011, 39(1): 411-416. [51] Imamura H, Uchida K, Ohmichi E, et al.Magnetotransport measurements of low dimensional conductors under pulsed ultra-high magnetic fields[J]. Journal of Physics: Conference Series, 2006, 51: 303-306. [52] Bottura L, Henrichsen K N.Field measurements[R]. Geneva, Switzerland: CERN, 2002. [53] Liu Qinying, Liu Shiyu, Luo Yongkang, et al.Pulsed-field nuclear magnetic resonance: Status and prospects[J]. Matter and Radiation at Extremes, 2021, 6(2): 024201. [54] Barra A L, Goiran M, Sessoli R, et al.Resonance THz spectroscopy in high magnetic fields[J]. Comptes Rendus Physique, 2013, 14(1): 106-114. [55] Tiesinga E, Mohr P J, Newell D B, et al.CODATA recommended values of the fundamental physical constants: 2018[J]. Reviews of Modern Physics, 2021, 93(2): 025010. [56] Ripka P.Magnetic Sensors and Magnetometers[M]. 2nd ed. Norwood: Artech House, 2021. [57] Haase J, Eckert D, Siegel H, et al.Nuclear magnetic resonance in pulsed high-field magnets[J]. Concepts in Magnetic Resonance Part B: Magnetic Resonance Engineering, 2003, 19B(1): 9-13. [58] Haase J, Eckert D, Siegel H, et al.High-field NMR in pulsed magnets[J]. Solid State Nuclear Magnetic Resonance, 2003, 23(4): 263-265. [59] Haase J.First 2H NMR at 58 T[J]. Applied Magnetic Resonance, 2004, 27(1/2): 297-302. [60] Haase J, Eckert D, Siegel H, et al.NMR at the frontier of pulsed high field magnets[J]. Physica B: Condensed Matter, 2004, 346: 514-518. [61] Haase J, Eckert D, Siegel H, et al.NMR in pulsed high magnetic fields[J]. Journal of Magnetism and Magnetic Materials, 2004, 272: E1623-E1625. [62] Haase J, Kozlov M, Müller K H, et al.NMR in pulsed high magnetic fields at 1.3 GHz[J]. Journal of Magnetism and Magnetic Materials, 2005, 290: 438-441. [63] Haase J, Kozlov M B, Webb A G, et al.2 GHz 1H NMR in pulsed magnets[J]. Solid State Nuclear Magnetic Resonance, 2005, 27(3): 206-208. [64] Kozlov M B, Haase J, Baumann C, et al.56T 1H NMR at 2.4 GHz in a pulsed high-field magnet[J]. Solid State Nuclear Magnetic Resonance, 2005, 28(1): 64-67. [65] Meier B, Greiser S, Haase J, et al.NMR signal averaging in 62T pulsed fields[J]. Journal of Magnetic Resonance, 2011, 210(1): 1-6. [66] Meier B, Kohlrautz J, Haase J, et al.Nuclear magnetic resonance apparatus for pulsed high magnetic fields[J]. The Review of Scientific Instruments, 2012, 83(8): 083113. [67] Weickert F, Meier B, Zherlitsyn S, et al.Implementation of specific-heat and NMR experiments in the 1500 ms long-pulse magnet at the Hochfeld-Magnetlabor Dresden[J]. Measurement Science and Technology, 2012, 23(10): 105001. [68] Abou-Hamad E, Bontemps P, Rikken G L J A. NMR in pulsed magnetic field[J]. Solid State Nuclear Magnetic Resonance, 2011, 40(2): 42-44. [69] Orlova A, Frings P, Suleiman M, et al.New high homogeneity 55T pulsed magnet for high field NMR[J]. Journal of Magnetic Resonance, 2016, 268: 82-87. [70] Chen Wenjun, Ma Hong, De Yu.Broadband continuous nuclear magnetic resonance signal in a pulsed magnetic field: numerical solutions of Bloch equations under radio frequency irradiation[J]. Applied Magnetic Resonance, 2016, 47(1): 41-52. [71] Chen Wenjun, Ma Hong, Yu De, et al.Numerical solution to the Bloch equations: paramagnetic solutions under wideband continuous radio frequency irradiation in a pulsed magnetic field[J]. Chinese Physics C, 2016, 40(8): 088201. [72] Zeng Xiaohu, Ma Hong, Jin Jiang, et al.Non-steady state NMR effect and application on time-varying magnetic field measurement[J]. Sensors, 2022, 22(24): 9960. [73] Kohlrautz J, Haase J, Green E L, et al.Field-stepped broadband NMR in pulsed magnets and application to SrCu2(BO3)2 at 54 T[J]. Journal of Magnetic Resonance, 2016, 271: 52-59. [74] Stork H, Bontemps P, Rikken G L J A. NMR in pulsed high-field magnets and application to high-T C superconductors[J]. Journal of Magnetic Resonance, 2013, 234: 30-34. [75] Qi Xin, Xiao Houxiu, Han Xiaotao, et al.A broad range frequency measurement method for continuous and pulsed THz waves[J]. The Review of Scientific Instruments, 2020, 91(1): 014710. [76] Fishman R S, Fernandez-Baca J A, Rõõm T. Spin-wave theory and its applications to neutron scattering and THz spectroscopy[M]. San Rafael, CA, USA: Morgan & Claypool Publishers, 2018. [77] 王振兴, 欧阳钟文, 肖后秀, 等. 脉冲强磁场电子自旋共振实验测试技术研究进展[J]. 实验技术与管理, 2022, 39(12): 1-9. Wang Zhenxing, Ouyang Zhongwen, Xiao Houxiu, et al.Research progress on experimental testing technology of electron spin resonance in pulsed high magnetic field[J]. Experimental Technology and Management, 2022, 39(12): 1-9. [78] George S, Bruyant N, Béard J, et al.Pulsed high magnetic field measurement with a rubidium vapor sensor[J]. The Review of Scientific Instruments, 2017, 88(7): 073102. [79] Garn W B, Caird R S, Thomson D B, et al.Technique for measuring megagauss magnetic fields using Zeeman effect[J]. Review of Scientific Instruments, 1966, 37(6): 762-767. [80] King P W, Learner R C M. The application of the Zeeman effect to the precise measurement of pulsed magnetic fields[J]. Proceedings of the Royal Society of London A Mathematical and Physical Sciences, 1971, 323(1554): 431-442. [81] Hori H, Miki M, Date M.Paschen-back effect of D-lines in sodium under a high magnetic field[J]. Journal of the Physical Society of Japan, 1982, 51(5): 1566. [82] Jiang Zhiyuan, Wu Jian, Zhang Daoyuan, et al.Measurement of magnetic field distribution produced by high-current pulse using Zeeman splitting of Na emission distributed by laser ablation[J]. The Review of Scientific Instruments, 2021, 92(9): 093502. [83] Banasek J T, Engelbrecht J T, Pikuz S A, et al. Measuring 20-100 T B-fields using Zeeman splitting of sodium emission lines on a 500 kA pulsed power machine[J]. Review of Scientific Instruments, 2016, 87(11): 11D407. [84] Gomez M R, Hansen S B, Peterson K J, et al. Magnetic field measurements via visible spectroscopy on the Z machine[J]. Review of Scientific Instruments, 2014, 85(11): 11E609. [85] Matsuda Y H.THz magneto-spectroscopy in megagauss fields[J]. Journal of the Physical Society of Japan, 2003, 72: 162-171. [86] Hilton D, Arikawa T, Kono A J.Cyclotron resonance[J]. Characterization of Materials, 2012: 2438. [87] Zvyagin S A, Ozerov M, Cizmár E, et al.Terahertz-range free-electron laser electron spin resonance spectroscopy: techniques and applications in high magnetic fields[J]. The Review of Scientific Instruments, 2009, 80(7): 073102. [88] Ohta H, Okubo S, Kawakami K, et al.Submillimeter wave ESR system using the pulsed magnetic field and its applications to one dimensional antiferromagnetic system[J]. Journal of the Physical Society of Japan, 2003, 72: 26-35. [89] Okubo S, Ohta H, Inagaki Y, et al.High-field ESR systems in Kobe[J]. Physica B: Condensed Matter, 2004, 346: 627-632. [90] Ohta H, Okubo S, Ohmichi E, et al.Multi-extreme THz ESR: Recent achievements in Kobe[C]//2016 41st International Conference on Infrared, Millimeter, and Terahertz waves (IRMMW-THz), Copenhagen, Denmark, 2016: 1-2. [91] Mitsudo S, Higuchi T, Kanazawa K, et al.High field ESR measurements using gyrotron FU series as radiation sources[J]. Journal of the Physical Society of Japan, 2003, 72: 172-176. [92] Sabchevski S, Glyavin M, Mitsudo S, et al.Novel and emerging applications of the gyrotrons worldwide: current status and prospects[J]. Journal of Infrared, Millimeter, and Terahertz Waves, 2021, 42(7): 715-741. [93] Drachenko O, Winnerl S, Schneider H, et al.Compact magnetospectrometer for pulsed magnets based on infrared quantum cascade lasers[J]. Review of Scientific Instruments, 2011, 82(3): 033108. [94] Patane A, Balkan N.Semiconductor Research: Experimental Techniques[M]. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. [95] Zhong Kai, Shi Wei, Xu Degang, et al.Optically pumped terahertz sources[J]. Science China Technological Sciences, 2017, 60(12): 1801-1818. [96] Witters J, Herlach F.ESR in pulsed fields[J]. Bulletin of Magnetic Resonance, 1987, 9: 132-150. [97] Maes J, Iakoubovskii K, Hayne M, et al.Diamond as a magnetic field calibration probe[J]. Journal of Physics D: Applied Physics, 2004, 37(7): 1102-1106. [98] Zhong Zhiqiang, Wang Xia, Zhang Junpei, et al.Optical detection of magnetic field with Mn4+: K2SiF6 phosphor from room to liquid helium temperatures[J]. Applied Physics Letters, 2017, 110(21): 212405. [99] IEEE standard for calibration of electromagnetic field sensors and probes (excluding antennas)from 9 kHz to 40 GHz: IEEE Std 1309TM-2013[S]. New York: IEEE, 2013. [100] Jacobs I S.Spin-flopping in MnF2 by high magnetic fields[J]. Journal of Applied Physics, 1961, 32(3): S61-S62. [101] Shapira Y, Foner S.Magnetic phase diagram of MnF2 from ultrasonic and differential magnetization measurements[J]. Physical Review B, 1970, 1(7): 3083-3096. [102] Felcher G P, Kleb R.Antiferromagnetic domains and the spin-flop transition of MnF2[J]. Europhysics Letters (EPL), 1996, 36(6): 455-460. [103] O’Sullivan W J, Schirber J E. Accurate de Haas-van Alphen periods for calibration of magnetic fields at low temperatures[J]. Cryogenics, 1967, 7(1/2/3/4): 118-119. [104] Jan J P, Templeton I M.Precision measurements of 〈111〉 de Haas-van alphen frequencies in copper, silver, and gold[J]. Physical Review, 1967, 161(3): 556-558. [105] Coleridge P T, Templeton I M.High precision de Haas-van Alphen measurements in the noble metals[J]. Journal of Physics F: Metal Physics, 1972, 2(4): 643-656. [106] Coniglio W A, Williams A F, Yannakopoulos A, et al.High magnetic field calibration using de Haas-van Alphen oscillations in polycrystalline copper[C]// APS March Meeting 2016, Baltimore, USA, 2016: V46.00007. [107] Hiruma K, Miura N.Magnetoresistance study of Bi and Bi-Sb alloys in high magnetic fields. II. landau levels and semimetal-semiconductor transition[J]. Journal of the Physical Society of Japan, 1983, 52(6): 2118-2127. [108] Eckert D, Grössinger R, Doerr M, et al.High precision pick-up coils for pulsed field magnetization measurements[J]. Physica B: Condensed Matter, 2001, 294: 705-708. [109] 刘永杰, 林梓泉, 王俊峰. 脉冲强磁场磁特性科学测量系统及其应用[J]. 物理, 2016, 45(1): 19-25. Liu Yongjie, Lin Ziquan, Wang Junfeng.A pulsed high magnetic field facility for magnetic property measurements and its applications[J]. Physics, 2016, 45(1): 19-25. [110] 董超. 脉冲强磁场下Ni3V2O8和GdMnO3单晶的磁热、磁电与磁弹效应研究[D]. 武汉: 华中科技大学, 2021. Dong Chao.Study on magnetothermal, magnetoelectric and magnetoelastic effects of Ni3V2O8 and GdMnO3 single crystals under pulsed strong magnetic field[D]. Wuhan: Huazhong University of Science and Technology, 2021. [111] Millanta L M, Agostini A, Lazzerini S.Helmholtz coils: Static and frequency-dependent performance limitations[C]//1993 International Symposium on Electromagnetic Compatibility, Dallas, TX, USA, 1993: 377-378. [112] Bronaugh E L.Helmholtz coils for calibration of probes and sensors: limits of magnetic field accuracy and uniformity[C]//Proceedings of International Symposium on Electromagnetic Compatibility, Atlanta, GA, USA, 1995: 72-76. [113] Zhao Pinzhang, Li Lin, Gao Jia, et al.Method of standard field for LF magnetic field meter calibration[J]. Measurement, 2017, 104: 223-232. [114] Mirzaeva G, Summers T J, Betz R E.A laboratory system to produce a highly accurate and uniform magnetic field for sensor calibration[C]//2012 IEEE International Conference on Industrial Technology, Athens, Greece, 2012: 1020-1025. [115] Messer S, Blackwell D D, Amatucci W E, et al.Broadband calibration of radio-frequency magnetic induction probes[J]. Review of Scientific Instruments, 2006, 77(11): 115104. [116] Yang J G, Choi J H, Kim B C, et al.A calibration method of a radio frequency magnetic probe[J]. Review of Scientific Instruments, 1999, 70(9): 3774-3775. [117] Everson E T, Pribyl P, Constantin C G, et al.Design, construction, and calibration of a three-axis, high-frequency magnetic probe (B-dot probe) as a diagnostic for exploding plasmas[J]. Review of Scientific Instruments, 2009, 80(11): 113505. [118] Li Fuming, Chen Zhipeng, Zhu Lizhi, et al.Note: a calibration method to determine the lumped-circuit parameters of a magnetic probe[J]. The Review of Scientific Instruments, 2016, 87(6): 066102. [119] Ratajczak M, Wondrak T.Analysis, design and optimization of compact ultra-high sensitivity coreless induction coil sensors[J]. Measurement Science and Technology, 2020, 31(6): 065902. [120] de Melo C F, Araújo R L, Ardjomand L M, et al. Calibration of low frequency magnetic field meters using a Helmholtz coil[J]. Measurement, 2009, 42(9): 1330-1334. [121] Peng T, Jiang F, Sun Q Q, et al.Design and test of a 90-T nondestructive magnet at the Wuhan national high magnetic field center[J]. IEEE Transactions on Applied Superconductivity, 2014, 24(3): 4300604. [122] Zherlitsyn S, Herrmannsdorfer T, Wustmann B, et al.Design and performance of non-destructive pulsed magnets at the Dresden high magnetic field laboratory[J]. IEEE Transactions on Applied Superconductivity, 2010, 20(3): 672-675. [123] Zherlitsyn S, Wustmann B, Herrmannsdorfer T, et al.Status of the pulsed-magnet-development program at the Dresden high magnetic field laboratory[J]. IEEE Transactions on Applied Superconductivity, 2012, 22(3): 4300603. [124] Béard J, Billette J, Ferreira N, et al.Design and tests of the 100-T triple coil at LNCMI[J]. IEEE Transactions on Applied Superconductivity, 2018, 28(3): 4300305.