多能微网在运行过程中会受到电价以及新能源出力等多重不确定因素的影响。针对该问题,提出了一种基于Wasserstein两阶段分布鲁棒优化的多主体多能微网合作博弈优化模型。首先,考虑多能微网和其内部产消者的互动关系,提出了“上层为多能微网,下层为产消者”的双层优化模型;其次,采用基于Wasserstein距离的模糊集分别构建了电价、多能微网新能源出力以及内部产消者光伏出力的不确定性模型;然后,在多主体多能微网之间,构建了考虑合作博弈和隐私保护的能源交互模型,并采用交替方向乘子法(Alternating direction method of multipliers,ADMM)结合列与约束生成法(column and constraint generation algorithm,CCG)对模型进行分布式求解。最后,基于包含三主体多能微网的系统进行了算例分析,验证了本文所提模型和算法的有效性。
As the core of the energy system, Multi-energy microgrid (MEMG) integrates distribution generation unit (such as wind turbine, photovoltaic), combing cooling, heat and power units, and energy storage to provide diverse energy supplies to customers for enhanced energy efficiency. However, the uncertainties in electricity prices and renewable generation are inevitably during the operation performance of MEMG. To tackle these uncertainties while enhancing economic benefits, this paper proposes a cooperative energy trading model for MEMGs based on Wasserstein two-stage distributionally robust optimization.
First, to describe the interaction between MEMG and prosumer, a bilevel programming is established where the MEMG plays a leader and multiple prosumers are regarded as followers. Based on the electricity purchase power obtained from each prosumer, the MEMG optimizes the transactive price and send to followers. In each follower model, prosumer minimizes its operation cost under the given electric price which from MEMG. Meanwhile, the ambiguous set based on Wasserstein distance are utilized to capture the uncertainty of electricity price, renewable energy and photovoltaic in prosumer, respectively. The model of MEMG is formulated as a Wasserstein two stage distributionally optimization problem (WDRO) considering uncertain price and renewable energy, while the uncertainty of prosumers can be addressed by introducing the distributionally robust chance constraint (DRCC). Then various methods are employed to transform the WDRO and DRCC into finite linear terms, such as convex theory and physical support method, respectively. On this basis, the bilevel programming for “MEMG-prosumer” can be replaced by single-level model via KKT conditions, strong duality theory and big-M method. Additionally, an energy interaction model considering cooperative game and privacy protection has been developed among MEMGs, and the alternating direction multiplier method (ADMM) combined with column constraint generation algorithm (CCG) are used to solve the problem.
Simulation results included three MEMGs verify the effectiveness of operation strategy proposed in this paper. The results indicate that:(1) The proposed bilevel programming can simultaneously provide optimal energy scheduling and price strategic for MEMG and prosumer. (2) The Wasserstein ambiguous set can effectively capture the price, renewable output and prosumer uncertainty, making it more comprehensive and less conservative compared to traditional robust optimization. (3) The effectiveness of the proposed energy trading model as well as the efficiency of the ADMM and CCG algorithms are demonstrated by corresponding simulation results.
王波, 王蔚, 马恒瑞, 李天格, 姚良忠. 基于Wasserstein两阶段分布鲁棒的多主体多能微网合作博弈优化调度[J]. 电工技术学报, 0, (): 20241525-20241525.
Wang Bo, Wang Wei, Ma Hengrui, Li Tiange, Yao Liangzhong. Multi-Agent Multi-Energy Microgrid Cooperative Game Scheduling Based on Wasserstein Two Stage Robust Optimization. Transactions of China Electrotechnical Society, 0, (): 20241525-20241525.
[1] 李鸿, 朱继忠, 董瀚江. 考虑协变量因素的多能微电网两阶段分布鲁棒优化调度[J/OL]. 中国电机工程学报, 2024: 1-12[2024-08-09]. http://kns.cnki.net/kcms/detail/11.2107.TM.20240507.2003.012.html.
Li Hong, Zhu Jizhong, Dong Hanjiang. Two-stage distributionally robust optimization scheduling for multi-energy microgrid considering covariate factors[J/OL]. Proceedings of the CSEE, 2024: 1-12[2024-08-09]. http://kns.cnki.net/kcms/detail/11.2107.TM.20240507.2003.012.html.
[2] Chen Weidong, Wang Junnan, Yu Guanyi, et al. Research on day-ahead transactions between multi-microgrid based on cooperative game model[J]. Applied Energy, 2022, 316: 119106.
[3] Zhang Chenghua, Wu Jianzhong, Zhou Yue, et al. Peer-to-Peer energy trading in a Microgrid[J]. Applied Energy, 2018, 220: 1-12.
[4] Islam M, Yang Fuwen, Amin M. Control and optimisation of networked microgrids: a review[J]. IET Renewable Power Generation, 2021, 15(6): 1133-1148.
[5] Wu Zhi, Xu Zheng, Gu Wei, et al. Decentralized game-based robustly planning scheme for distribution network and microgrids considering bilateral energy trading[J]. IEEE Transactions on Sustainable Energy, 2022, 13(2): 803-817.
[6] Mohseni S, Pishvaee M S. Energy trading and scheduling in networked microgrids using fuzzy bargaining game theory and distributionally robust optimization[J]. Applied Energy, 2023, 350: 121748.
[7] Nasiri N, Zeynali S, Najafi Ravadanegh S, et al. Moment-based distributionally robust peer-to-peer transactive energy trading framework between networked microgrids, smart parking lots and electricity distribution network[J]. IEEE Transactions on Smart Grid, 2024, 15(2): 1965-1977.
[8] Wang Zhuo, Hou Hui, Zhao Bo, et al. Risk-averse stochastic capacity planning and P2P trading collaborative optimization for multi-energy microgrids considering carbon emission limitations: an asymmetric Nash bargaining approach[J]. Applied Energy, 2024, 357: 122505.
[9] Pu Yuchen, Li Qi, Luo Shuyu, et al. Peer-to-peer electricity-hydrogen trading among integrated energy systems considering hydrogen delivery and transportation[J]. IEEE Transactions on Power Systems, 2024, 39(2): 3895-3911.
[10] 王学杰, 赵会茹, 曹艺琼, 等. 基于随机-Nash-Harsanyi讨价还价博弈的光伏-氢储能多主体分散协同调度[J]. 电工技术学报, 2024, 39(9): 2652-2666.
Wang Xuejie, Zhao Huiru, Cao Yiqiong, et al. Photovoltaic-hydrogen energy storage multi-agent decentralized cooperative scheduling based on stochastic-Nash-Harsanyi bargaining game[J]. Transactions of China Electrotechnical Society, 2024, 39(9): 2652-2666.
[11] Zeng Bo, Zhao Long. Solving two-stage robust optimization problems using a column-and-constraint generation method[J]. Operations Research Letters, 2013, 41(5): 457-461.
[12] Wang Lingling, Jiang Chuanwen, Gong Kai, et al. Data-driven distributionally robust economic dispatch for distribution network with multiple microgrids[J]. IET Generation, Transmission & Distribution, 2020, 14(24): 5712-5719.
[13] Lu Shuai, Gu Wei, Xu Yijun, et al. Unlock the thermal flexibility in integrated energy systems: a robust nodal pricing approach for thermal loads[J]. IEEE Transactions on Smart Grid, 2023, 14(4): 2734-2746.
[14] Mohajerin Esfahani P, Kuhn D. Data-driven distributionally robust optimization using the Wasserstein metric: performance guarantees and tractable reformulations[J]. Mathematical Programming, 2018, 171(1): 115-166.
[15] Zhong Junjie, Li Yong, Wu Yan, et al. Optimal operation of energy hub: an integrated model combined distributionally robust optimization method with Stackelberg game[J]. IEEE Transactions on Sustainable Energy, 2023, 14(3): 1835-1848.
[16] Li Yang, Han Meng, Shahidehpour M, et al. Data-driven distributionally robust scheduling of community integrated energy systems with uncertain renewable generations considering integrated demand response[J]. Applied Energy, 2023, 335: 120749.
[17] Zhong Junjie, Zhao Yirui, Li Yong, et al. Synergistic operation framework for the energy hub merging stochastic distributionally robust chance-constrained optimization and Stackelberg game[J]. IEEE Transactions on Smart Grid, 2024, PP(99): 1.
[18] Lin Zhenjia, Wu Qiuwei, Chen Haoyong, et al. Scenarios-oriented distributionally robust optimization for energy and reserve scheduling[J]. IEEE Transactions on Power Systems, 2023, 38(3): 2943-2946.
[19] Zheng Xiaodong, Chen Haoyong. Data-driven distributionally robust unit commitment with Wasserstein metric: tractable formulation and efficient solution method[J]. IEEE Transactions on Power Systems, 2020, 35(6): 4940-4943.
[20] Nguyen H T, Choi D H. Decentralized distributionally robust coordination between distribution system and charging station operators in unbalanced distribution systems[J]. IEEE Transactions on Smart Grid, 2023, 14(3): 2164-2177.
[21] Nguyen H T, Choi D H. Distributionally robust model predictive control for smart electric vehicle charging station with V2G/V2V capability[J]. IEEE Transactions on Smart Grid, 2023, 14(6): 4621-4633.
[22] 侯慧, 甘铭, 吴细秀, 等. 考虑移动氢能存储的港口多能微网两阶段分布鲁棒优化调度[J]. 中国电机工程学报, 2024, 44(8): 3078-3093.
Hou Hui, Gan Ming, Wu Xixiu, et al. Two-stage distributionally robust optimal scheduling for port multi-energy microgrid considering mobile hydrogen energy storage[J]. Proceedings of the CSEE, 2024, 44(8): 3078-3093.
[23] 俞鸿飞, 王韵楚, 吕瑞扬, 等. 考虑灵活爬坡产品的虚拟电厂两阶段分布鲁棒优化运营策略[J]. 电力系统自动化, 2024, 48(14): 16-27.
Yu Hongfei, Wang Yunchu, Lyu Ruiyang, et al. Two-stage distributionally robust optimization operation strategy of virtual power plants considering flexible ramping products[J]. Automation of Electric Power Systems, 2024, 48(14): 16-27.
[24] 张玉敏, 李竞锐, 吉兴全, 等. 考虑电-碳市场决策协同的园区综合能源系统双层博弈调度[J/OL]. 电力系统自动化, 2024: 1-22. [2024-09-18]. http://kns.cnki.net/kcms/detail/32.1180.TP.20240808.1340.004.html.
Zhang Yumin, Li Jingrui, Ji Xingquan, et.al. Bi-level game dispatch of park integrated energy system considering decision-making synergy of electricity-carbon markets.
[J/OL]. Automation of Electric Power Systems, 2024: 1-22. [2024-09-18]. http://kns.cnki.net/kcms/detail/32.1180.TP.20240808.1340.004.html.
[25] 陈春宇, 黄宸恺, 王剑晓, 等. 考虑风电不确定性的调频辅助服务市场多时间尺度出清调度策略[J/OL]. 电工技术学报, 2024: 1-16. [2024-08-15]. https://doi.org/10.19595/j.cnki.1000-6753.tces.231477.
Chen Chunyu, Huang Chenkai, Wang Jianxiao, et al. Multi-time-scale frequency regulation market clearing and dispatch strategy considering wind power uncertainty[J/OL]. Transactions of China Electro technical Society, 2024: 1-16. [2024-08-15]. https://doi.org/10.19595/j.cnki.1000-6753.tces.231477.
[26] 宋梦, 林固静, 高赐威, 等. 考虑多重不确定性的广义共享储能优化配置方法[J/OL]. 电工技术学报, 2024: 1-18. [2024-10-09]. https://doi.org/10.19595/j.cnki.1000-6753.tces.240248.
Song Meng, Lin Gujing, Gao Ciwei, et al. A generalized shared energy storage optimization configuration method considering multiple uncertainties[J/OL]. Transactions of China Electro technical Society, 2024: 1-18.[2024-10-09]. https://doi.org/10.19595/j.cnki.1000-6753.tces.240248.
[27] 江岳文, 陈梅森. 基于鲁棒后悔度的日前市场购电联合优化[J]. 电工技术学报, 2019, 34(9): 1971-1983.
Jiang Yuewen, Chen Meisen. Joint optimization of electricity purchase in the day-ahead market based on robust regret[J]. Transactions of China Electrotechnical Society, 2019, 34(9): 1971-1983.
[28] 葛少云, 杜咏梅, 郭玥, 等. 基于分布鲁棒优化的车-站-网日前能量管理与交易[J]. 电力系统自动化, 2024, 48(5): 11-20.
Ge Shaoyun, Du Yongmei, Guo Yue, et al. Day-ahead energy management and trading of electric vehicles, charging stations and distribution networks based on distributionally robust optimization[J]. Automation of Electric Power Systems, 2024, 48(5): 11-20.
[29] 文艺林, 胡泽春, 宁剑, 等. 基于分布鲁棒机会约束的充电运营商参与调峰市场投标策略[J]. 电力系统自动化, 2022, 46(7): 23-32.
Wen Yilin, Hu Zechun, Ning Jian, et al. Bidding strategy of charging operator participating in peak regulation market based on distributionally robust chance constraint[J]. Automation of Electric Power Systems, 2022, 46(7): 23-32.
[30] Xie Weijun. On distributionally robust chance constrained programs with Wasserstein distance[J]. Mathematical Programming, 2021, 186(1): 115-155.
[31] Arrigo A, Ordoudis C, Kazempour J, et al. Wasserstein distributionally robust chance-constrained optimization for energy and reserve dispatch: an exact and physically-bounded formulation[J]. European Journal of Operational Research, 2022, 296(1): 304-322.
[32] 黄大为, 郭念康, 于娜, 等. 面向系统灵活性提升的大用户激励型需求响应优化策略[J]. 电工技术学报, 2024, 39(21):.
Huang Dawei, Guo Niankang, Yu Na, et al. Optimization strategy for enhancing system flexibility through incentive demand response of large-scale users[J]. Transactions of China Electrotechnical Society, 2024, 39(21):.
[33] Li Junkai, Xu Zhengyang, Liu Hong, et al. A Wasserstein distributionally robust planning model for renewable sources and energy storage systems under multiple uncertainties[J]. IEEE Transactions on Sustainable Energy, 2023, 14(3): 1346-1356.
[34] Wang Yuwei, Yang Yuanjuan, Fei Haoran, et al. Wasserstein and multivariate linear affine based distributionally robust optimization for CCHP-P2G scheduling considering multiple uncertainties[J]. Applied Energy, 2022, 306: 118034.
[35] 张锞, 王旭, 杨宏坤, 等. 数据中心集群灵活边界下电力系统分布鲁棒优化调度方法[J]. 电力系统自动化, 2024, 48(7): 235-247.
Zhang Ke, Wang Xu, Yang Hongkun, et al. Distributionally robust optimal scheduling method for power system under flexibility boundaries of data center clusters[J]. Automation of Electric Power Systems, 2024, 48(7): 235-247.
[36] Qiu Haifeng, Sun Qirun, Lu Xi, et al. Optimality-feasibility-aware multistage unit commitment considering nonanticipative realization of uncertainty[J]. Applied Energy, 2022, 327: 120062.
[37] Nash J F. The bargaining problem[J]. Econometrica, 1950, 18(2): 155.
[38] 董雷, 李扬, 陈盛, 等. 考虑多重不确定性与电碳耦合交易的多微网合作博弈优化调度[J]. 电工技术学报, 2024, 39(9): 2635-2651.
Dong Lei, Li Yang, Chen Sheng, et al. Multi-microgrid cooperative game optimization scheduling considering multiple uncertainties and coupled electricity-carbon transactions[J]. Transactions of China Electrotechnical Society, 2024, 39(9): 2635-2651.
[39] 郭方洪, 冯秀荣, 杨淏, 等. 基于数据模型双驱动的新能源微电网分布鲁棒优化调度[J/OL]. 电力系统自动化, 2024: 1-16.[2024-09-18]. http://kns.cnki.net/kcms/detail/32.1180.TP.20240903.1719.012.html.
Guo Fanghong, Feng Xiurong, Yang Hao, et.al. Data-model-dual-driven based distributionally robust optimization scheduling of renewable energy microgrid.
[J/OL]. Automation of Electric Power Systems, 2024: 1-16. [2024-09-18]. http://kns.cnki.net/kcms/detail/32.1180.TP.20240903.1719.012.html.
[40] Wang Lingling, Zhu Zean, Jiang Chuanwen, et al. Bi-level robust optimization for distribution system with multiple microgrids considering uncertainty distribution locational marginal price[J]. IEEE Transactions on Smart Grid, 2021, 12(2): 1104-1117.