Comprehensive Adaptive Primary Frequency Control Strategy Based on Battery Energy Storage System
Liang Jiye1, Yuan Zhi1, Wang Weiqing1, Li Ji2
1. Renewable Energy Power Generation and Grid-Connection Control Engineering Research Center Ministry of Education Xinjiang University Urumqi 830017 China;
2. Institute of Electric Power Science State Grid Xinjiang Electric Power Co. Ltd Urumqi 830011 China
The primary frequency control of thermal power units has low energy efficiency and negative impact on the environment. The energy storage battery has the characteristic of fast response speed, but the control strategy of the energy storage system only considers the State of Charge (SOC) near the minimum value in the discharge state, or the adaptive control when SOC is near the maximum value in the charging state, which has poor adaptability and does not consider the SOC estimation accuracy. As a result, the control strategy of the energy storage system has poor effect on inhibiting the deterioration of the power grid frequency, and then limits the performance of the energy storage system when it participates in the primary frequency control. To solve this problem, this paper proposes a comprehensive adaptive primary frequency control strategy based on battery energy storage system.
Firstly, the trend control strategy and the inertia and sag control strategy are combined to define the trend output of the battery energy storage system and the frequency acceleration of the power grid, and explain the relationship among the frequency acceleration, frequency change rate and frequency deviation of the power grid. Secondly, the output coefficient of the battery energy storage system is adaptive control, and the trend coefficient is determined according to the frequency acceleration of the power grid, the inertia coefficient is determined according to the frequency change rate of the power grid, and the sag coefficient is determined according to the frequency deviation of the power grid, so as to improve the adaptive ability of the energy storage system. Finally, in order to prevent the energy storage battery from overcharging and over discharging and improve the SOC estimation accuracy, a multi-element adaptive SOC estimation method is proposed.
Simulation results show that in the step load disturbance, the maximum frequency deviation and steady-state frequency deviation of the proposed method are the smallest, which are -0.061 Hz and -0.049 Hz respectively. Compared with the adaptive method, the maximum frequency deviation and steady-state frequency deviation are reduced by 20.7% and 40.0% respectively. SOC has the highest accuracy, with a maximum error of 0.09% and an average error of 0.01%. In the short-time continuous load disturbance, the grid frequency deviation of the proposed method is 0.038 Hz, the peak-to-peak value is 0.126 Hz, the average SOC is 0.474, the peak-to-peak value is 0.052, and the grid frequency deviation is the smallest, and the SOC fluctuation is large. In the case of long-term continuous load disturbance, the frequency deviation and peak-to-peak value of the proposed method are 0.035 Hz and 0.126 Hz respectively, and the single frequency control effect is the best. Compared with the adaptive method, the average frequency difference deviation and frequency peak-to-peak value are reduced by 50.0% and 21.5% respectively.
The following conclusions are drawn: (1) The trend control strategy can slow down the frequency deterioration, speed up the frequency recovery and reduce the maximum frequency deviation of the power grid. (2) Adaptive determination of output coefficient effectively reduces the maximum steady-state frequency deviation of the power grid and improves the adaptability of the energy storage system. (3) The multi-component adaptive humic acid SOC method is mainly based on ampere-hour integration method, and gradually transitions to Kalman filter method, which effectively reduces the maximum and average estimation errors.
梁继业, 袁至, 王维庆, 李骥. 基于电池储能系统的综合自适应一次调频策略[J]. 电工技术学报, 0, (): 240456-240456.
Liang Jiye, Yuan Zhi, Wang Weiqing, Li Ji. Comprehensive Adaptive Primary Frequency Control Strategy Based on Battery Energy Storage System. Transactions of China Electrotechnical Society, 0, (): 240456-240456.
[1] 张怡静, 李智, 时艳强, 等. 基于储能惯量支撑的受端电网频率优化控制方法[J]. 电工技术学报, 2024, 39(11): 3556-3568.
Zhang Yijing, Li Zhi, Shi Yanqiang, et al.Optimal frequency control method of receiving power grid based on energy storage inertia support[J]. Transactions of China Electrotechnical Society, 2024, 39(11): 3556-3568.
[2] 鲁宗相, 李佳明, 乔颖, 等. 新能源场站快速频率支撑能力评估研究现状与技术展望[J]. 电力系统自动化, 2024, 48(10): 1-19.
Lu Zongxiang, Li Jiaming, Qiao Ying, et al.Research status and technology prospects of fast frequency support capability assessment for renewable energy stations[J]. Automation of Electric Power Systems, 2024, 48(10): 1-19.
[3] 张祥宇, 胡剑峰, 付媛, 等. 风储联合系统的虚拟惯量需求与协同支撑[J]. 电工技术学报, 2024, 39(3): 672-685.
Zhang Xiangyu, Hu Jianfeng, Fu Yuan, et al.Virtual inertia demand and collaborative support of wind power and energy storage system[J]. Transactions of China Electrotechnical Society, 2024, 39(3): 672-685.
[4] 刘凡, 李凤婷, 张高航, 等. 计及循环寿命和运营策略的风电汇集区域储能电站优化配置[J]. 电力系统保护与控制, 2023, 51(8): 127-139.
Liu Fan, Li Fengting, Zhang Gaohang, et al.Optimal configuration of storage power stations in a wind power gathering area considering cycle life and operation strategy[J]. Power System Protection and Control, 2023, 51(8): 127-139.
[5] 刘小龙, 李欣然, 孟娅, 等. 离网状态储能/燃气机分层协调频率控制策略[J]. 电工技术学报, 2023, 38(17): 4800-4810.
Liu Xiaolong, Li Xinran, Meng Ya, et al.Hierarchical coordination frequency control strategy of battery energy storage/gas turbine under off-grid state[J]. Transactions of China Electrotechnical Society, 2023, 38(17): 4800-4810.
[6] 陈勃旭, 崔炜, 陈宇, 等. 分布储能直流微电网中多储能荷电均衡控制策略[J]. 电力系统保护与控制, 2023, 51(24): 111-120.
Chen Boxu, Cui Wei, Chen Yu, et al.Charge balance control strategy for multiple energy storage in a distributed energy storage DC microgrid[J]. Power System Protection and Control, 2023, 51(24): 111-120.
[7] 杨德健, 王鑫, 严干贵, 等. 计及调频死区的柔性风储联合频率控制策略[J]. 电工技术学报, 2023, 38(17): 4646-4656.
Yang Dejian, Wang Xin, Yan Gangui, et al.Flexible frequency regulation scheme of DFIG embed battery energy storage system considering deadbands[J]. Transactions of China Electrotechnical Society, 2023, 38(17): 4646-4656.
[8] 高嵩, 李军, 宋辉, 等. 提升火电机组一次调频性能的火电-储能一体化系统研究[J]. 电力系统保护与控制, 2023, 51(21): 116-125.
Gao Song, Li Jun, Song Hui, et al.An integrated thermal power-energy storage system for improving primary frequency regulation performance of thermal power units[J]. Power System Protection and Control, 2023, 51(21): 116-125.
[9] 鄢仁武, 姜雪儿. 变调节因子的不同容量锂电池储能系统能量控制策略[J]. 电气技术, 2024, 25(2): 21-30.
Yan Renwu, Jiang Xue’er.Energy control strategies for lithium battery energy storage systems with different capacities based on variable regulating factors[J]. Electrical Engineering, 2024, 25(2): 21-30.
[10] 梁继业, 袁至, 王维庆, 等. 基于储能系统多重约束的一次调频策略[J]. 高电压技术, 2024, 50(6): 2478-2489.
Liang Jiye, Yuan Zhi, Wang Weiqing, et al.Primary frequency control strategy based on multiple constraint of energy storage system[J]. High Voltage Engineering, 2024, 50(6): 2478-2489.
[11] 杜锡力, 李笑竹, 陈来军, 等. 面向多场景调节需求的集中式共享储能鲁棒优化配置[J]. 电工技术学报, 2022, 37(23): 5911-5921.
Du Xili, Li Xiaozhu, Chen Laijun, et al.Robust and optimized configuration of centralized shared energy storage for multi-scenario regulation demand[J]. Transactions of China Electrotechnical Society, 2022, 37(23): 5911-5921.
[12] 邓霞, 孙威, 肖海伟. 储能电池参与一次调频的综合控制方法[J]. 高电压技术, 2018, 44(4): 1157-1165.
Deng Xia, Sun Wei, Xiao Haiwei.Integrated control strategy of battery energy storage system in primary frequency regulation[J]. High Voltage Engineering, 2018, 44(4): 1157-1165.
[13] 赵熙临, 张大恒, 桂玥, 等. 考虑荷电状态约束的储能参与电网一次调频综合控制策略[J]. 现代电力, 2022, 39(1): 95-103.
Zhao Xilin, Zhang Daheng, Gui Yue, et al.An integrated control strategy for energy storage participating in primary frequency regulation considering state of charge constraint[J]. Modern Electric Power, 2022, 39(1): 95-103.
[14] 李军徽, 高卓, 应鸿, 等. 基于动态下垂系数与SOC基点的储能一次调频控制策略[J]. 电力系统保护与控制, 2021, 49(5): 1-10.
Li Junhui, Gao Zhuo, Ying Hong, et al.Primary frequency regulation control strategy of energy storage based on dynamic droop coefficient and SOC reference[J]. Power System Protection and Control, 2021, 49(5): 1-10.
[15] 刘英培, 田仕杰, 梁海平, 等. 考虑SOC的电池储能系统一次调频策略研究[J]. 电力系统保护与控制, 2022, 50(13): 107-118.
Liu Yingpei, Tian Shijie, Liang Haiping, et al.Control strategy of a battery energy storage system considering SOC in primary frequency regulation of power grid[J]. Power System Protection and Control, 2022, 50(13): 107-118.
[16] 李军徽, 高卓, 李翠萍, 等. 基于动态任务系数的储能辅助风电一次调频控制策略[J]. 电力系统自动化, 2021, 45(19): 52-59.
Li Junhui, Gao Zhuo, Li Cuiping, et al.Control strategy for dynamic task coefficient based primary frequency regulation of wind power assisted by energy storage[J]. Automation of Electric Power Systems, 2021, 45(19): 52-59.
[17] 李培强, 丰云鹤, 李欣然, 等. 考虑超短期负荷预测的储能电池参与电网一次调频控制策略[J]. 电力系统自动化, 2019, 43(19): 87-93, 148.
Li Peiqiang, Feng Yunhe, Li Xinran, et al.Control strategy for energy storage battery participating in primary frequency regulation of power grid considering Ultra-short-term load forecasting[J]. Automation of Electric Power Systems, 2019, 43(19): 87-93, 148.
[18] 王育飞, 杨铭诚, 薛花, 等. 计及SOC的电池储能系统一次调频自适应综合控制策略[J]. 电力自动化设备, 2021, 41(10): 192-198, 219.
Wang Yufei, Yang Mingcheng, Xue Hua, et al.Self-adaptive integrated control strategy of battery energy storage system considering SOC for primary frequency regulation[J]. Electric Power Automation Equipment, 2021, 41(10): 192-198, 219.
[19] 罗勇, 祁朋伟, 黄欢, 等. 基于容量修正的安时积分SOC估算方法研究[J]. 汽车工程, 2020, 42(5): 681-687.
Luo Yong, Qi Pengwei, Huang Huan, et al.Study on battery SOC estimation by ampere-hourIntegral method with capacity correction[J]. Automotive Engineering, 2020, 42(5): 681-687.
[20] 王子毅, 朱承治, 周杨林, 等. 基于动态可重构电池网络的OCV-SOC在线估计[J]. 中国电机工程学报, 2022, 42(8): 2919-2928.
Wang Ziyi, Zhu Chengzhi, Zhou Yanglin, et al.OCV-SOC estimation based on dynamic reconfigurable battery network[J]. Proceedings of the CSEE, 2022, 42(8): 2919-2928.
[21] 潘海鸿, 张沫, 王惠民, 等. 基于多影响因素建立锂离子电池充电内阻的动态模型[J]. 电工技术学报, 2021, 36(10): 2199-2206.
Pan Haihong, Zhang Mo, Wang Huimin, et al.Establishing a dynamic model of lithium-ion battery charging internal resistance based on multiple factors[J]. Transactions of China Electrotechnical Society, 2021, 36(10): 2199-2206.
[22] 刘康, 康龙云, 岳睿, 等. 基于门控循环单元编解码器的锂离子电池荷电状态估计[J]. 电网技术, 2024, 48(5): 2161-2169.
Liu Kang, Kang Longyun, Yue Rui, et al.Lithium-ion battery state of charge estimation based on gated recurrent unit Encoder-decoder[J]. Power System Technology, 2024, 48(5): 2161-2169.
[23] 徐保荣, 王兴成, 张齐, 等. 自适应扩展卡尔曼滤波电池荷电状态估算方法[J]. 哈尔滨工业大学学报, 2021, 53(7): 92-98.
Xu Baorong, Wang Xingcheng, Zhang Qi, et al.Adaptive extended Kalman filter for estimating the charging state of battery[J]. Journal of Harbin Institute of Technology, 2021, 53(7): 92-98.
[24] 刘征宇, 黎盼春, 朱诚诚, 等. 基于组合模型的锂电池参数辨识和电池荷电状态在线联合估计[J]. 中国机械工程, 2020, 31(10): 1162-1168.
Liu Zhengyu, Li Panchun, Zhu Chengcheng, et al.Lithium battery parameter identification and SOC online joint estimation based on combined model[J]. China Mechanical Engineering, 2020, 31(10): 1162-1168.
[25] 周娟, 林加顺, 吴乃豪, 等. 一种联合PID控制与扩展卡尔曼滤波的磷酸铁锂电池荷电状态估算方法[J]. 电网技术, 2023, 47(4): 1623-1631.
Zhou Juan, Lin Jiashun, Wu Naihao, et al.State of charge estimation for LiFeO4 battery combining PID control and extended Kalman filter[J]. Power System Technology, 2023, 47(4): 1623-1631.
[26] 刘兴涛, 李坤, 武骥, 等. 基于EKF-SVM算法的动力电池SOC估计[J]. 汽车工程, 2020, 42(11): 1522-1528, 1544.
Liu Xingtao, Li Kun, Wu Ji, et al.State of charge estimation for traction battery based on EKF-SVM algorithm[J]. Automotive Engineering, 2020, 42(11): 1522-1528, 1544.
[27] 国家市场监督管理总局, 国家标准化管理委员会. 火力发电机组一次调频试验及性能验收导则: GB/T 30370—2022[S]. 北京: 中国标准出版社, 2022.