Optimal Design of Transverse Magnetic-Axial Magnetic Contact Structure with Iron Core
Ding Can1,2, Li Jiang1, Yuan Zhao3, Wang Zhoulin1
1. College of Electrical Engineering & New Energy China Three Gorges University Yichang 443002 China; 2. State Key Laboratory of Electrical Insulation and Power Equipment Xi'an Jiaotong University Xi'an 710049 China; 3. State Key Laboratory of Advanced Electromagnetic Technology Huazhong University of Science and Technology Wuhan 430074 China
Abstract:As the core component of vacuum interrupter, the contact's arc extinguishing ability will directly affect the DC breaking process. The existing contact models usually rely on transverse magnetic field or axial magnetic field to regulate the vacuum arc and help the vacuum circuit breaker to break. In this paper, a type of contact which can generate both transverse magnetic field and axial magnetic field is designed. The main design idea of the contact is that the vacuum arc generated on the surface of the transverse magnetic contact rotates and diffuses into the axial magnetic field under the action of electromagnetic force, and the arc changes from the concentrated state to the diffused state under the action of the axial magnetic field. The vacuum arc in the diffused state can greatly reduce the ablation on the contact surface and improve the service life of the contact. Firstly, three contact models are established by finite element simulation software, and the magnetic field distribution generated by the contact under high frequency current is calculated. At the peak of current, the contact gap center can generate an axial magnetic field of about 21 mT, the transverse magnetic field intensity is about 71 mT, and the axial magnetic field distribution is uneven. Secondly, due to the increase of iron core structure, the original divergent magnetic field can be bound into a certain space, and the magnetic field intensity in the contact gap can be enhanced. In this paper, an iron core structure is added between the inner and outer contacts, and the iron core structure is slotted. The simulation structure shows that after adding the iron core, the transverse magnetic field intensity increases by 1.22 mT, the maximum axial magnetic field intensity increases from 21.80 mT to 26.53 mT, the magnetic field intensity increases by 4.73 mT, the axial magnetic field distribution unevenness decreases from 8.90 to 7.39, and the magnetic field distribution becomes more uniform. Adding grooving treatment in the iron core structure increases the transverse magnetic field intensity in the contact gap by 0.25 mT, and the maximum axial magnetic field intensity also slightly increases by 0.49 mT, but the uneven distribution of axial magnetic field increases from 7.39 to 7.44, which is not conducive to the diffusion of vacuum arc. Finally, in order to further improve the strength and distribution uniformity of the magnetic field in the contact gap, this paper proposes a joint optimization method based on BP neural network and multi-objective intelligent optimization algorithm to optimize the contact model, establishes a BP neural network model with α, Δ, r, h and d as inputs and M, η and N as outputs, and optimizes the contact model through multi-objective intelligent optimization algorithm. The optimization results show that when the contact structure parameters α is 31.8°, Δ is 8.3 mm, r is 15.2 mm, h is 16.1 mm, and d is 1.1 mm, a transverse magnetic field of 74.99 mT is generated in the contact gap center. The axial magnetic field of 44.02 mT can be generated at the contact gap center of the peak current, and the unevenness is reduced from 7.44 before optimization to 4.67, which greatly improves the uniformity and improves the ability of magnetic field to regulate vacuum arc.
丁璨, 李江, 袁召, 王周琳. 带铁心横磁-纵磁触头结构的优化设计[J]. 电工技术学报, 2024, 39(11): 3499-3509.
Ding Can, Li Jiang, Yuan Zhao, Wang Zhoulin. Optimal Design of Transverse Magnetic-Axial Magnetic Contact Structure with Iron Core. Transactions of China Electrotechnical Society, 2024, 39(11): 3499-3509.
[1] 温家良, 吴锐, 彭畅, 等. 直流电网在中国的应用前景分析[J]. 中国电机工程学报, 2012, 32(13): 7-12, 185. Wen Jialiang, Wu Rui, Peng Chang, et al.Analysis of DC grid prospects in China[J]. Proceedings of the CSEE, 2012, 32(13): 7-12, 185. [2] Zhang Shao, Tseng K J, Vilathgamuwa D M, et al.Design of a robust grid interface system for PMSG-based wind turbine generators[J]. IEEE Transactions on Industrial Electronics, 2011, 58(1): 316-328. [3] 贾申利, 史宗谦, 王立军. 真空断路器用于直流开断研究综述[J]. 高压电器, 2017, 53(3): 12-16. Jia Shenli, Shi Zongqian, Wang Lijun.Review on the research of vacuum circuit breaker for DC breaking[J]. High Voltage Apparatus, 2017, 53(3): 12-16. [4] 于海. 直流断路器的现状及发展[J]. 电力工程技术, 2018, 37(2): 114-120. Yu Hai.The status and development of DC circuit breaker[J]. Electric Power Engineering Technology, 2018, 37(2): 114-120. [5] 王灿, 杜船, 徐杰雄. 中高压直流断路器拓扑综述[J]. 电力系统自动化, 2020, 44(9): 187-199. Wang Can, Du Chuan, Xu Jiexiong.Review of topologies for medium-and high-voltage DC circuit breaker[J]. Automation of Electric Power Systems, 2020, 44(9): 187-199. [6] 徐殿国, 刘瑜超, 武健. 多端直流输电系统控制研究综述[J]. 电工技术学报, 2015, 30(17): 1-12. Xu Dianguo, Liu Yuchao, Wu Jian.Review on control strategies of multi-terminal direct current transmission system[J]. Transactions of China Electrotechnical Society, 2015, 30(17): 1-12. [7] 陈名, 徐敏, 黎小林, 等. 高压直流断路器开断试验方法综述[J]. 高压电器, 2018, 54(7): 37-43. Chen Ming, Xu Min, Li Xiaolin, et al.Review of HVDC circuit breaker breaking test method[J]. High Voltage Apparatus, 2018, 54(7): 37-43. [8] 卫思明. 高压直流断路器关键技术研究[D]. 北京: 华北电力大学, 2015. Wei Siming.Research on key technologies of high voltage DC circuit breaker[D]. Beijing: North China Electric Power University, 2015. [9] 李培源. 低压直流真空断路器换流回路拓扑与灭弧室结构优化设计[D]. 天津: 天津工业大学, 2020. [10] 张梓莹, 梁德世, 蔡淼中, 等. 机械式高压直流真空断路器换流参数研究[J]. 电工技术学报, 2020, 35(12): 2554-2561. Zhang Ziying, Liang Deshi, Cai Miaozhong, et al.Research on commutation parameters of mechanical HVDC vacuum circuit breaker[J]. Transactions of China Electrotechnical Society, 2020, 35(12): 2554-2561. [11] Franck C M.HVDC circuit breakers: a review identifying future research needs[J]. IEEE Transactions on Power Delivery, 2011, 26(2): 998-1007. [12] 朱立颖, 武建文. 横向磁场下中频真空电弧形态及电弧电压特性[J]. 中国电机工程学报, 2011, 31(1): 131-137. Zhu Liying, Wu Jianwen.Modes of intermediate-frequency vacuum arc and characteristics of arc VoltageUnder transverse magnetic field[J]. Proceedings of the CSEE, 2011, 31(1): 131-137. [13] 杨兰索, 李敏, 王晓琴, 等. 真空开关触头结构形式对磁感应强度和电磁力的影响[J]. 高压电器, 2015, 51(5): 193-198. Yang Lansuo, Li Min, Wang Xiaoqin, et al.Effects of vacuum switchgear contact structure on magnetic flux density and electromagnetic force[J]. High Voltage Apparatus, 2015, 51(5): 193-198. [14] 蒋原, 武建文. 纵向磁场中触头材料和直径对中频真空电弧特性的影响[J]. 中国电机工程学报, 2015, 35(20): 5367-5374. Jiang Yuan, Wu Jianwen.Effects of contact materials and diameters on characteristics of intermediate-frequency vacuum arc in axial magnetic field[J]. Proceedings of the CSEE, 2015, 35(20): 5367-5374. [15] 蒋原, 李擎, 夏丽娜, 等. 中频条件下真空灭弧室的纵向磁场仿真[J]. 电工技术学报, 2021, 36(11): 2424-2432. Jiang Yuan, Li Qing, Xia Lina, et al.Simulation of axial magnetic field in vacuum arc interrupters at intermediate frequency[J]. Transactions of China Electrotechnical Society, 2021, 36(11): 2424-2432. [16] 刘志远, 王季梅, 王政, 等. 杯状纵磁真空灭弧室三维纵向磁场及涡流的有限元分析[J]. 高压电器, 2000, 36(2): 18-21. Liu Zhiyuan, Wang Jimei, Wang Zheng, et al.Finite element analysis on 3D axial magnetic field and eddy current in cup shape axial magnetic vacumm[J]. High Voltage Apparatus, 2000, 36(2): 18-21. [17] 钱奇锋. 基于直流真空断路器的混磁触头结构设计及磁场分析[D]. 沈阳: 沈阳工业大学, 2017. Qian Qifeng.Design and analysis on hybrid magnetic contact structure and magnetic field for DC vacuum circuit breaker[D]. Shenyang: Shenyang University of Technology, 2017. [18] 蔡淼中. 基于直流真空断路器的复合触头磁场调控[D]. 大连: 大连理工大学, 2020. Cai Miaozhong.Magnetic arc control of composite contact based on DC vacuum circuit breaker[D]. Dalian: Dalian University of Technology, 2020. [19] 张缙, 刘智, 刘意, 等. 基于智能算法的双面散热SiC功率模块多目标优化设计[J]. 电工技术学报, 2023, 38(20): 5515-5529. Zhang Jin, Liu Zhi, Liu Yi, et al.Research on multi-objective optimization design of double-sided cooling SiC power module based on intelligent algorithm[J]. Transactions of China Electrotechnical Society, 2023, 38(20): 5515-5529. [20] 张春雷, 张辉, 叶佩青. 高霍尔位置检测精度的圆筒型永磁同步直线电机设计[J]. 电工技术学报, 2022, 37(10): 2481-2490. Zhang Chunlei, Zhang Hui, Ye Peiqing.Design of tubular permanent magnet synchronous linear motor by reliability-based robust design optimization[J]. Transactions of China Electrotechnical Society, 2022, 37(10): 2481-2490. [21] 颜华, 张馨, 王伊凡. 基于RBF神经网络和遗传算法的ERT传感器优化[J]. 沈阳工业大学学报, 2021, 43(3): 295-300. Yan Hua, Zhang Xin, Wang Yifan.ERT sensor optimization based on RBF neural network and genetic algorithm[J]. Journal of Shenyang University of Technology, 2021, 43(3): 295-300. [22] 臧谦, 贾伯岩, 范辉, 等. 基于磁场与电弧互作的真空断路器触头结构设计[J]. 高压电器, 2022, 58(12): 42-48. Zang Qian, Jia Boyan, Fan Hui, et al.Design of contact structure of vacuum circuit breaker based on interaction between magnetic field and arc[J]. High Voltage Apparatus, 2022, 58(12): 42-48. [23] 丁璨, 李江, 袁召, 等. 基于NSGA-II和BP神经网络的杯状纵磁触头结构优化设计[J]. 电工技术学报, 2022, 37(23): 6074-6082. Ding Can, Li Jiang, Yuan Zhao, et al.Structural optimization design of cup-shaped longitudinal magnetic contact based on NSGA-Ⅱ and BP neural network[J]. Transactions of China Electrotechnical Society, 2022, 37(23): 6074-6082. [24] 董华军, 温超阳, 孙鹏, 等. 基于正交实验新型真空灭弧室触头磁场仿真与参数优化设计[J]. 电工技术学报, 2022, 37(21): 5598-5606. Dong Huajun, Wen Chaoyang, Sun Peng, et al.Simulation and optimization of the contact magnetic field of a new type of vacuum interrupter based on orthogonal experiment[J]. Transactions of China Electrotechnical Society, 2022, 37(21): 5598-5606. [25] Wang Zheng, Wang Bo, Liu Chun, et al.Improved BP neural network algorithm to wind power forecast[J]. The Journal of Engineering, 2017, 2017(13): 940-943. [26] 宋晓川. 基于人工过零的直流开断中真空电弧动态特性的研究[D]. 西安: 西安交通大学, 2013. Song Xiaochuan.Research on the dynamic characteristics of vacuum arc in DC interruption based on artificial current zero[D]. Xi′an: Xi′an Jiaotong University, 2013. [27] 董华军, 杨海军, 郭英杰, 等. 一种具有横纵磁场的新型真空灭弧室触头三维磁场仿真[J]. 电工技术学报, 2015, 30(5): 111-118. Dong Huajun, Yang Haijun, Guo Yingjie, et al.3-D magnetic field simulation of a new-type contact with TMF-AMF for vacuum interrupters[J]. Transactions of China Electrotechnical Society, 2015, 30(5): 111-118. [28] 修士新, 刘紫熹, 王婷, 等. 一种铁芯式杯状横磁真空灭弧室触头: CN106531543A[P].2017-03-22. [29] Wang Jing, Fang Jiandong, Zhao Y.Visual prediction of gas diffusion concentration based on regression analysis and BP neural network[J]. The Journal of Engineering, 2019, 2019(13): 19-23. [30] Han Honggui, Zhang Linlin, Hou Ying, et al.Adaptive candidate estimation-assisted multi-objective particle swarm optimization[J]. Science China Technological Sciences, 2022, 65(8): 1685-1699. [31] 赵士伟, 卓力, 王素玉, 等. 一种基于NNIA多目标优化的代价敏感决策树构建方法[J]. 电子学报, 2011, 39(10): 2348-2352, 2396. Zhao Shiwei, Zhuo Li, Wang Suyu, et al.A multi-objective optimization based constructing cost-sensitive decision trees method[J]. Acta Electronica Sinica, 2011, 39(10): 2348-2352, 2396. [32] Deb K, Pratap A, Agarwal S, et al.A fast and elitist multiobjective genetic algorithm: NSGA-II[J]. IEEE Transactions on Evolutionary Computation, 2002, 6(2): 182-197.