Characteristics and Simulation Analysis of Partial Discharge Process of Condenser Foil Layer Defect
Yang Fan1, Zhang Yuchen1, Wang Pengbo1, Wu Xingwang2, Wu Jie2
1. State Key Laboratory of Power Transmission Equipment Technology Chongqing University Chongqing 400044 China; 2. State Grid Anhui Power Supply Company Hefei 230061 China
Abstract:Oil-paper capacitive transformer bushings are widely used. However, partial discharge (PD) is a serious threat to safe and stable operation of power system. In order to study the variation law of PD process with condenser foil layer damage and clarify the PD development stage, this paper establishes a defect bushing PD model to analyze the development law of parameters. Based on fluid drift diffusion theory and solid bipolar charge transfer theory, a simulation model for the surface PD process of the end screen defect needle plate is established, which combines the changes in voltage, charge morphology, PD duration and the charge density distribution at the oil-paper interface. Firstly, build a test sample bushing with process defect. According to a set of 220 kV test apparatus to test the relationship between the voltage level and PD parameters, capacitance, and discharge carbonization trace. Then based on the hydrodynamic drift-diffusion model and the bipolar charge transport model, a needle-plane surface PD simulation model was built to simulate the process and space charge distribution of PD. Finally, with the experimental phenomenon and simulation results, the 3 stages PD process and space charge distribution at different applied voltage are provided. Simulation and experiment results show that the bushing in the AC electric field causes the capacitor core plate to generate static electricity and causes electric field distortion, which results in charge migration and forming streamer. Tip defective foil layer is at extremely inhomogeneous electric field, the needle tip part of the high voltage positive pole, collision ionization will occur first at the tip, collision formation of positive ion density increases to form streamer, negative ions at the tip of the compound. Through experimental verification in needle-plane surface discharge simulation, it can be assumed that the process of PD is as follows: (1) At the initial stage, corona discharge at the tip of the foil layer can be observed. At this time the electric field strength near the tip of the foil layer is the largest, which releases of free electrons and molecular ionization. But the collision energy did not reach the electron avalanche. (2) At the development stage, the collisional ionization at the tip acquires sufficient energy to move and develop continuously under the action of the polarization swimming dynamics. Due to the local high temperature and high field strength, the moisture and gas within the insulating oil paper form bubbles and adheres to the oil paper interface, and the gas in its products also adheres to the interface and forms small bridges, leading to the streamer towards to the paper surface and breakdown along the surface. (3) At the damage stage, surface PD affect the space charge distribution within the oil-paper and start to breakdown discharge phenomenon on paper surface. High temperature and high field strength from discharge lead to paper insulation failure, resulting in carbonization traces. The following conclusions can be drawn from the simulation analysis: (1) By the process of physical parameter changes in PD experiments, from corona PD to the development of surface discharge, the amount of PD increases with the increasing voltage. At 60 kV, oil paper bubbles precipitate, causing a continuous increase in PD. The insulation paper cellulose breaks and forms carbonization channels, increasing conductivity and causing a further decrease in PD capacity. (2) Based on diffusion drift charge transfer theory and bipolar charge transfer theory to simulate surface PD, the tip PD process formed by the damaged edge of the bushing condenser foil layer is obtained. There are mainly three stages. (3) Based on carbonization traces and the simulation process of PD, the voltage level will cause changes in the PD process, morphology, and duration. When the voltage level is less than 40 kV, the PD is in the first and second stages, and when the voltage level is higher than 40 kV, it goes through three stages. The larger the voltage amplitude, the more branches of the electrical tree, the shorter the discharge time, and the more charges absorbed by the oil-paper interface.
[1] Tenbohlen S, Convenor, Jagers J.Transformer Reliability Survey[R]. Paris: CIGRE, 2015. [2] 国家电网有限公司设备管理部. 变压器类设备典型故障及缺陷案例汇编: 2011—2018年[M]. 北京: 中国电力出版社, 2019. [3] 黎卫国, 张长虹, 夏谷林, 等. ±800 kV直流穿墙套管介损超标原因分析及改进措施[J]. 高压电器, 2015, 51(9): 169-176. Li Weiguo, Zhang Changhong, Xia Gulin, et al.Case study on abnormal dielectric loss of a ±800 kV DC wall bushing with countermeasures[J]. High Voltage Apparatus, 2015, 51(9): 169-176. [4] 简政, 郝建, 刘清松, 等. 典型缺陷油纸绝缘套管的高压频域介电和局部放电特性差异[J]. 高电压技术, 2022, 48(10): 4113-4123. Jian Zheng, Hao Jian, Liu Qingsong, et al.Difference analysis of high-voltage frequency domain dielectric and partial discharge characteristics of oil-paper insulation bushings with typical defections[J]. High Voltage Engineering, 2022, 48(10): 4113-4123. [5] 许佐明, 胡伟, 罗晓庆, 等. 典型缺陷油浸纸套管绝缘劣化特性研究[J]. 高压电器, 2022, 58(5): 112-120. Xu Zuoming, Hu Wei, Luo Xiaoqing, et al.Study on insulation degradation characteristics of oil impregnated paper bushing with typical defects[J]. High Voltage Apparatus, 2022, 58(5): 112-120. [6] 王理丽, 康钧, 王生富, 等. 直流电压下油纸绝缘针板缺陷局部放电演化规律[J]. 高压电器, 2023, 59(2): 153-161, 168. Wang Lili, Kang Jun, Wang Shengfu, et al.Evolution of partial discharge by needle-plate defect in oil-pressboard insulation under DC voltage[J]. High Voltage Apparatus, 2023, 59(2): 153-161, 168. [7] 李长云, 冀章, 闫宏伟. 绝缘纸特性和极性反转对油纸绝缘空间电荷效应的影响[J]. 中国电机工程学报, 2020, 40(14): 4708-4718, 4748. Li Changyun, Ji Zhang, Yan Hongwei.Influence of insulation paper characteristics and polarity reversal on space charge effect of oil-paper insulation[J]. Proceedings of the CSEE, 2020, 40(14): 4708-4718, 4748. [8] 鄢水强, 廖瑞金, 吕彦冬, 等. 纳米Al2O3掺杂对绝缘纸热老化电气特性的影响[J]. 电工技术学报, 2017, 32(11): 225-232. Yan Shuiqiang, Liao Ruijin, Lü Yandong, et al.Influence of nano-Al2O3 on electrical properties of insulation paper under thermal aging[J]. Transactions of China Electrotechnical Society, 2017, 32(11): 225-232. [9] 卢斌先, 岳战兵, 王宜静, 等. 椭球电极负电晕放电的数值仿真研究[J]. 电工技术学报, 2023, 38(13): 3379-3387. Lu Binxian, Yue Zhanbing, Wang Yijing, et al.Numerical simulation study on negative corona discharge of small ellipsoidal electrode[J]. Transactions of China Electrotechnical Society, 2023, 38(13): 3379-3387. [10] 张贵新, 李大雨, 王天宇. 交流电压下气固界面电荷积聚与放电特性研究进展[J]. 电工技术学报, 2022, 37(15): 3876-3887. Zhang Guixin, Li Dayu, Wang Tianyu.Progress in researching charge accumulation and discharge characteristics at gas-solid interface under AC voltage[J]. Transactions of China Electrotechnical Society, 2022, 37(15): 3876-3887. [11] 丁宁, 穆海宝, 梁兆杰, 等. 水分对干式套管环氧浸渍纸材料介电特性的影响[J]. 电工技术学报, 2022, 37(11): 2716-2724. Ding Ning, Mu Haibao, Liang Zhaojie, et al.Effect of moisture on the dielectric properties of epoxy resin impregnated paper for dry-type bushing[J]. Transactions of China Electrotechnical Society, 2022, 37(11): 2716-2724. [12] 宁鑫, 彭宗仁, 刘鹏, 等. 一种适用于高温条件下的电声脉冲法空间电荷测量系统[J]. 中国电机工程学报, 2017, 37(6): 1835-1843. Ning Xin, Peng Zongren, Liu Peng, et al.An improved pulsed electro-acoustic setup for space charge measurement at high temperatures[J]. Proceedings of the CSEE, 2017, 37(6): 1835-1843. [13] Georghiou G E, Morrow R, Metaxas A C.A two-dimensional, finite-element, flux-corrected transport algorithm for the solution of gas discharge problems[J]. Journal of Physics D: Applied Physics, 2000, 33(19): 2453-2466. [14] Davies A J, Evans C J, Jones F L.Electrical breakdown of gases: the spatio-temporal growth of ionization in fields distorted by space charge[J]. Proceedings of the Royal Society of London Series A, 1964, 281(1385): 164-183. [15] Hwang J G, Zahn M, Pettersson L A A, et al. Modeling streamers in transformer oil: the transitional fast 3rd mode streamer[C]//2009 IEEE 9th International Conference on the Properties and Applications of Dielectric Materials, Harbin, China, 2009: 573-578. [16] Jadidian J.Charge transport and breakdown physics in liquid/solid insulation systems[D]. Cambridge: Massachusetts Institute of Technology, 2013. [17] 国家质量监督检验检疫总局, 中国国家标准化管理委员会. 交流电压高于1 000 V的绝缘套管: GB/T 4109—2008[S]. 北京: 中国标准出版社, 2008. [18] 刘其昶. 电气绝缘结构设计原理: 下册电力电容器绝缘子和套管等[M]. 北京: 机械工业出版社, 1981. [19] Specification for pressboard and presspaper for electricalpurposes-part 1: definitions and general requirements: IEC 60641-1[S]. IEC, 2007. [20] 王辉, 李成榕, 贺惠民, 等. 温度对油纸绝缘沿面放电发展过程的影响[J]. 高电压技术, 2010, 36(4): 884-890. Wang Hui, Li Chengrong, He Huimin, et al.Influence of temperature on developing processes of surface discharges in oil-paper insulation[J]. High Voltage Engineering, 2010, 36(4): 884-890. [21] High-voltage test techniques-partial discharge measurements:IEC 60270-2002[S]. IEC: 2002. [22] 李剑,江天炎,何志满,等.交直流复合电压下的油纸绝缘局部放电统计图谱研究[J].高电压技术, 2012, 38(8): 1856-1862. Li Jian, Jiang Tianyan, He Zhiman, et al.Statistical distributions of partial discharges in oil-paper insulation under AC-DC combined voltages[J]. High Voltage Engineering, 2012, 38(8): 1856-1862. [23] 刘阳, 董明, 邢亚东, 等. 油纸绝缘沿面放电多物理信号发展规律及阶段特征[J]. 中国电机工程学报, 2023, 43(4): 1611-1622. Liu Yang, Dong Ming, Xing Yadong, et al.Development law and stage characteristics of multi-physical signals of surface discharge in oil-paper insulation[J]. Proceedings of the CSEE, 2023, 43(4): 1611-1622. [24] 杜伯学, 朱闻博, 李进, 等. 换流变压器阀侧套管油纸绝缘研究现状[J]. 电工技术学报, 2019, 34(6): 1300-1309. Du Boxue, Zhu Wenbo, Li Jin, et al.Research status of oil-paper insulation for valve side bushing of converter transformer[J]. Transactions of China Electrotechnical Society, 2019, 34(6): 1300-1309. [25] Lesaint O, Massala G.Positive streamer propagation in large oil gaps: experimental characterization of propagation modes[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 1998, 5(3): 360-370. [26] 梅中原, 史海洋, 付大志. 高压电力电容器极板边缘电场的简易计算[J]. 电力电容器与无功补偿, 2012, 33(1): 42-50, 72. Mei Zhongyuan, Shi Haiyang, Fu Dazhi.Simple calculation of electric-field at the foil edge in high voltage power capacitor[J]. Power Capacitor & Reactive Power Compensation, 2012, 33(1): 42-50, 72. [27] Onsager L.Deviations from Ohm’s law in weak electrolytes[J]. The Journal of Chemical Physics, 1934, 2(9): 599-615. [28] Hwang J G, Zahn M, Pettersson L A A. Mechanisms behind positive streamers and their distinct propagation modes in transformer oil[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2012, 19(1): 162-174. [29] O’Sullivan F, Hwang J G, Zahn M, et al. A model for the initiation and propagation of positive streamers in transformer oil[C]//Conference Record of the 2008 IEEE International Symposium on Electrical Insulation, Vancouver, BC, Canada, 2008: 210-214. [30] Hwang J W G. Elucidating the mechanisms behind pre-breakdown phenomena in transformer oil systems[D]. Cambridge: Massachusetts Institute of Technology, 2010. [31] Li Xiaoran, Sun A, Zhang Guanjun, et al.A computational study of positive streamers interacting with dielectrics[J]. Plasma Sources Science and Technology, 2020, 29(6): 065004. [32] Min Daomin, Li Shengtao, Ohki Y.Numerical simulation on molecular displacement and DC breakdown of LDPE[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2016, 23(1): 507-516. [33] 何聪, 张芊, 曹铎耀, 等. 交流与操作冲击叠加电压下SF6气体中沿面局部放电特性[J]. 电工技术学报, 2020, 35(8): 1807-1817. He Cong, Zhang Qian, Cao Duoyao, et al.Surface partial discharge characteristics in SF6 under AC and switching impulse superimposed voltage[J]. Transactions of China Electrotechnical Society, 2020, 35(8): 1807-1817. [34] 何东欣, 巩文洁, 刘洪顺, 等. 直流电场下油纸绝缘楔形油隙局部放电仿真研究[J]. 中国电机工程学报, 2021, 41(16): 5779-5789. He Dongxin, Gong Wenjie, Liu Hongshun, et al.Simulation study on partial discharge of oil-paper insulated in wedge-shaped oil gaps under DC electric field[J]. Proceedings of the CSEE, 2021, 41(16): 5779-5789. [35] Li Xiaoran, Sun Anbang, Teunissen J.A computational study of negative surface discharges: characteristics of surface streamers and surface charges[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2020, 27(4): 1178-1186. [36] 张宁, 刘士利, 郝建, 等. 变压器油中气泡杂质相局部放电特性研究综述[J]. 电工技术学报, 2023, 38(10): 2757-2776. Zhang Ning, Liu Shili, Hao Jian, et al.Review on partial discharge characteristics of bubble impurity phase in transformer oil[J]. Transactions of China Electrotechnical Society, 2023, 38(10): 2757-2776. [37] 李斯盟. 换流变直流电场分量对油纸绝缘针板局放特性影响及其放电机理研究[D]. 济南: 山东大学, 2019. Li Simeng.Characteristics and mechanism of needle-plate partial discharges in oil-pressboard insulation under the presence of DC electric field component in converter transformer[D]. Jinan: Shandong University, 2019.