Abstract:The research on dual active full-bridge (DAB) converters mainly focuses on phase-shifting methods, topology, and dynamic response. Among them, phase shift methods include single phase shift, double phase shift, extended phase shift, and triple phase shift. These different phase-shifting methods correspond to different inductor current stress and reflux power, but the ultimate goal is to obtain higher transmission efficiency. When the transmission power changes suddenly, the traditional phase shifting method will cause the circuit current to generate a DC bias. This biased current will increase the current stress of the inductor, and in severe cases, it will also cause the transformer to be biased. Therefore, a transition state is introduced to suppress the DC bias when the power changes suddenly. Firstly, the DAB converter based on full phase-shift modulation is taken as the research object. The current of the bridge arm on the low-voltage side of the DAB converter with this structure is reduced by half, and the voltage of the transformer on the secondary side is also reduced by half. Therefore, the conduction loss can be reduced, and the transmission efficiency can be improved. The global optimal solution of inductor current stress can be obtained by full phase shift modulation. The optimal solution is divided into four regions, and the sudden current change in each optimal region is analyzed. Two kinds of phase shifting states are divided, and each phase shifting state corresponds to a different relationship between the magnitude of the phase shifting angle. The sudden power change is discussed in the same direction and reverses sudden change in these two phase-shifting states. The corresponding current bias results can be obtained when the power changes suddenly in the full range. This result with a three-dimensional surface diagram fully reflects the magnitude of the inductor current bias generated when the power changes suddenly. Then, a new DC bias suppression strategy is proposed, which adopts a unified transition state introduction method for all power mutation situations. For all phase-shifting states, the pulse signals of the same group of switches are changed to facilitate the realization of unified modulation. Moreover, with the goal of no DC bias after power mutation, the transition-state phase shift angles corresponding to various sudden changes are calculated. It is shown that the same transition state results can be obtained by power mutation in different regions without changing the power mutation direction. Thus, the controller implementation is simplified, and fewer control chip resources are occupied while maintaining a fast dynamic response. Finally, a unified carrier modulation strategy is proposed. The applicability of the modulation strategy is analyzed, and the modulation method is applied to the experimental platform. During the experiment, the power is mutated in the same direction and reversed in the four optimal regions. The experimental results show that the method proposed can effectively suppress the DC bias when the power changes suddenly, and the dynamic response is relatively stable. Through the above analysis and verification, the following conclusions can be obtained: (1) The traditional phase-shift modulation strategy will produce a current bias phenomenon when the power changes suddenly. In particular, the DC bias is more apparent when the power is suddenly changed across regions and reversed. (2) The proposed method of introducing a transition state can effectively solve the DC bias phenomenon. In addition, different phase shift states and working areas can obtain consistent results, simplifying the modulation process. A stable transition is achieved while ensuring the global optimum of the inductor current stress. (3) Switching pulses are generated by a new carrier modulation method. The suppression of the DC bias can be completed within one cycle, and no imbalance will occur. The experimental results are consistent with the theoretical analysis, which verifies the proposed method.
吴春华, 陈修淋, 李智华, 汪飞. 全移相双有源全桥直流变换器的瞬态电流偏置抑制策略[J]. 电工技术学报, 2024, 39(4): 1116-1131.
Wu Chunhua, Chen Xiulin, Li Zhihua, Wang Fei. Transient Current Bias Suppression Strategy of Full Phase Shifting Dual Active Full Bridge DC Converter. Transactions of China Electrotechnical Society, 2024, 39(4): 1116-1131.
[1] 赵彪, 安峰, 宋强, 等. 双有源桥式直流变压器发展与应用[J]. 中国电机工程学报, 2021, 41(1): 288-298. Zhao Biao, An Feng, Song Qiang, et al.Development and application of DC transformer based on dual- active-bridge[J]. Proceedings of the CSEE, 2021, 41(1): 288-298. [2] 孙志峰, 肖岚, 王勤. 输出并联型双有源全桥变换器控制技术研究综述[J]. 中国电机工程学报, 2021, 41(5): 1811-1831. Sun Zhifeng, Xiao Lan, Wang Qin.Review research on control technology of output parallel dual- active-bridge-converters[J]. Proceedings of the CSEE, 2021, 41(5): 1811-1831. [3] 涂春鸣, 管亮, 肖凡, 等. 双有源桥DC-DC变换器的模态分析方法[J]. 中国电机工程学报, 2019, 39(18): 5468-5479, 5595. Tu Chunming, Guan Liang, Xiao Fan, et al.Modal analysis method of dual active bridge DC-DC converter[J]. Proceedings of the CSEE, 2019, 39(18): 5468-5479, 5595. [4] 杨柯欣, 宋文胜, 安峰, 等. 双向有源全桥DC-DC变换器电流源模式的快速动态响应控制方法[J]. 中国电机工程学报, 2018, 38(8): 2439-2447, 2553. Yang Kexin, Song Wensheng, An Feng, et al.Rapid dynamic response control method of dual-active- bridge DC-DC converters in current source mode[J]. Proceedings of the CSEE, 2018, 38(8): 2439-2447, 2553. [5] 侯旭, 曾正, 冉立, 等. 基于扩展移相控制的双向有源桥变换器回流功率优化[J]. 中国电机工程学报, 2018, 38(23): 7004-7014, 7134. Hou Xu, Zeng Zheng, Ran Li, et al.Backflow power optimization of dual active bridge converter based on extended-phase-shift control[J]. Proceedings of the CSEE, 2018, 38(23): 7004-7014, 7134. [6] 王攀攀, 徐泽涵, 高利强, 等. 新扩展移相角下的双有源桥DC-DC变换器优化控制策略[J]. 中国电机工程学报, 2023, 43(2): 727-738. Wang Panpan, Xu Zehan, Gao Liqiang, et al.Optimal control strategy for dual active bridge DC-DC converter with new extended-phase-shift angle[J]. Proceedings of the CSEE, 2023, 43(2): 727-738. [7] 郭华越, 张兴, 赵文广, 等. 扩展移相控制的双有源桥DC-DC变换器的优化控制策略[J]. 中国电机工程学报, 2019, 39(13): 3889-3899. Guo Huayue, Zhang Xing, Zhao Wenguang, et al.Optimal control strategy of dual active bridge DC-DC converters with extended-phase-shift control[J]. Pro- ceedings of the CSEE, 2019, 39(13): 3889-3899. [8] 刘飞龙, 郑智文, 孙孝峰, 等. 双有源桥变换器低平均电流的调制研究[J]. 中国电机工程学报, 2019, 39(16): 4884-4891, 4990. Liu Feilong, Zheng Zhiwen, Sun Xiaofeng, et al.A modulation study on low rectified average current of dual active bridge converter[J]. Proceedings of the CSEE, 2019, 39(16): 4884-4891, 4990. [9] 王武, 雷文浩, 蔡逢煌, 等. 结合电流应力优化的双有源全桥DC-DC变换器自抗扰控制[J]. 电工技术学报, 2022, 37(12): 3073-3086. Wang Wu, Lei Wenhao, Cai Fenghuang, et al.Active disturbance rejection control of dual-active-bridge DC-DC converter with current stress optimization[J]. Transactions of China Electrotechnical Society, 2022, 37(12): 3073-3086. [10] 杨向真, 孔令浩, 杜燕, 等. 基于动态矩阵控制的DAB变换器电流应力与回流功率优化方法[J]. 电力系统自动化, 2021, 45(17): 153-160. Yang Xiangzhen, Kong Linghao, Du Yan, et al.Optimization method of current stress and backflow power of DAB converter based on dynamic matrix control[J]. Automation of Electric Power Systems, 2021, 45(17): 153-160. [11] 王仁龙, 杨庆新, 操孙鹏, 等. 一种优化电流应力的双有源桥式DC-DC变换器双重移相调制策略[J].电工技术学报, 2021, 36(增刊1): 274-282. Wang Renlong, Yang Qingxin, Cao Sunpeng, et al.An optimized dual phase shift modulation strategy for dual active bridge DC-DC converter[J]. Transactions of China Electrotechnical Society, 2021, 36(S1): 274-282. [12] 曾进辉, 孙志峰, 雷敏, 等. 双重移相控制的双主动全桥变换器全局电流应力分析及优化控制策略[J]. 电工技术学报, 2019, 34(12): 2507-2518. Zeng Jinhui, Sun Zhifeng, Lei Min, et al.Global current stress analysis and optimal control strategy of dual-active full bridge converter based on dual phase shift control[J]. Transactions of China Electrotech- nical Society, 2019, 34(12): 2507-2518. [13] 胡燕, 张天晖, 杨立新, 等. 双重移相DAB变换器回流功率优化与电流应力优化的对比研究[J]. 中国电机工程学报, 2020, 40(增刊1): 243-253. Hu Yan, Zhang Tianhui, Yang Lixin, et al.Com- parative study of reactive power optimization and current stress optimization of DAB converter with dual phase shift control[J]. Proceedings of the CSEE, 2020, 40(S1): 243-253. [14] 王攀攀, 徐泽涵, 王莉, 等. 基于三重移相的双有源桥DC-DC变换器效率与动态性能混合优化控制策略[J]. 电工技术学报, 2022, 37(18): 4720-4731. Wang Panpan, Xu Zehan, Wang Li, et al.A hybrid optimization control strategy of efficiency and dynamic performance of dual-active-bridge DC-DC converter based on triple-phase-shift[J]. Transactions of China Electrotechnical Society, 2022, 37(18): 4720-4731. [15] 蔡逢煌, 石安邦, 江加辉, 等. 结合电流应力优化与虚拟电压补偿的双有源桥DC-DC变换器三重移相优化控制[J]. 电工技术学报, 2022, 37(10): 2559-2571. Cai Fenghuang, Shi Anbang, Jiang Jiahui, et al.Triple-phase-shift optimal control of dual-active- bridge DC-DC converter with current stress optimi- zation and virtual voltage compensation[J]. Transa- ctions of China Electrotechnical Society, 2022, 37(10): 2559-2571. [16] 任强, 艾胜. 全工况范围的DAB三自由度优化控制策略[J]. 中国电机工程学报, 2020, 40(11): 3613-3622. Ren Qiang, Ai Sheng.A three degree freedom optimal control strategy of dual-active-bridge converters for full range operations[J]. Proceedings of the CSEE, 2020, 40(11): 3613-3622. [17] 费跃, 李若愚, 雷园, 等. 宽输入电压双有源桥变换器电流有效值最小控制方法研究[J]. 中国电机工程学报, 2019, 39(19): 5656-5665, 5893. Fei Yue, Li Ruoyu, Lei Yuan, et al.Minimize RMS current method of wide input voltage dual active bridge converter[J]. Proceedings of the CSEE, 2019, 39(19): 5656-5665, 5893. [18] 高宇, 李若愚, 李林柘, 等. 三重移相调制模式下双有源变换器的直接功率控制[J]. 电工技术学报, 2022, 37(18): 4707-4719. Gao Yu, Li Ruoyu, Li Linzhe, et al.Triple phase shift modulation-based direct power control strategy for a dual active bridge converter[J]. Transactions of China Electrotechnical Society, 2022, 37(18): 4707-4719. [19] 吴春华, 陈修淋, 李智华, 等. 基于矩阵变压器的全移相双有源全桥直流变换器的电流应力优化方法[J/OL]. 中国电机工程学报, 2022, DOI: 10.13334/ j.0258-8013.pcsee.213271. Wu Chunhua, Chen Xiulin, Li Zhihua, et al.Current stress optimization method of full-phase-shift dual- active full-bridge DC converter based on matrix transformer[J/OL]. Proceedings of the CSEE, 2022, DOI: 10.13334/j.0258-8013.pcsee.213271. [20] Takagi K, Fujita H.Dynamic control and performance of a dual-active-bridge DC-DC converter[J]. IEEE Transactions on Power Electronics, 2018, 33(9): 7858-7866. [21] Zhao Biao, Song Qiang, Liu Wenhua, et al.Transient DC bias and current impact effects of high- frequency-isolated bidirectional DC-DC converter in practice[J]. IEEE Transactions on Power Electronics, 2015, 31(4): 3203-3216. [22] Dai Tianli, Qin Jinggang, Ge Gao, et al.Research on transient DC bias analysis and suppression in EPS DAB DC-DC converter[J]. IEEE Access, 2020, 8(1): 61421-61432. [23] Yang Caiwei, Wang Jian, Wang Chenchen, et al.Transient DC bias current reducing for bidirectional dual-active-bridge DC-DC converter by modifying modulation[J]. IEEE Transactions on Power Elec- tronics, 2021, 36(11): 13149-13161. [24] Wang Shien, Li Chi, Wang Kui, et al.Loss imbalance and transient DC-bias mitigation in dual active bridge DC/DC converters[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2021, 9(2): 1399-1409. [25] Yang Guoliang, Zhang Deqiang, Yang Xitong, et al.Transient DC bias suppression and general dynamic modulation for dual active bridge converter[C]//2022 IEEE International Power Electronics and Application Conference and Exposition (PEAC), Guangzhou, China, 2022: 527-532. [26] Du Chunshui, Guo Wenchen, Guo Song, et al.Transient current optimal control of the hybrid three level dual active bridge converters based on triple- phase-shifting control[C]//2021 IEEE 12th Inter- national Symposium on Power Electronics for Distributed Generation Systems (PEDG), Chicago, IL, USA, 2021: 1-8. [27] Shu Liangcai, Chen Wu, Song Zhanfei.Prediction method of DC bias in DC-DC dual-active-bridge converter[J]. CPSS Transactions on Power Electro- nics and Applications, 2019, 4(2): 152-162. [28] Qiu Guanqun, Ran Li, Feng Hao, et al.A fluxgate- based current sensor for DC bias elimination in a dual active bridge converter[J]. IEEE Transactions on Power Electronics, 2022, 37(3): 3233-3246.