Research on Optimal Design and Synergism Arrangement Methodology of Convex-Shaped Traps for Ultra High Voltage AC GIS/GIL Applications
Geng Qiuyu1, Hu Zhiying1, Li Qingmin1, Zhuang Tianxin2, Liu Yan3
1. State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources North China Electric Power University Beijing 102206 China;
2. Jiangsu Electric Power Research Institute Nanjing 210036 China;
3. China Electric Power Research Institute Beijing 100192 China
AC gas insulated switchgear and transmission lines faces critical insulation failure challenges caused by metal particles inside, and the probability of insulation failure caused by metal particles under UHV increases. However, the particle traps in practical engineering, the key devices available to inhibit the movement of particles, lack the ability to proactively capture particles. Firstly, in this paper, the proactively capture particle mechanism of the convex-shaped trap is analyzed basing on the dynamic model of metal particle in GIS/GIL.
By analyzing the force of particles and the axial electric field distribution of the convex-shaped trap, this paper considers that the axial electric field distribution near the convex-shaped traps is an important factor leading to the active trapping of metal particles. The external voltage is applied to the starting voltage. Considering the applied voltage is AC voltage, the initial time should be set. Due to the electrostatic induction, the metal particles are negatively charged, and the metal particles on both sides of the trap move towards the trap direction. At the same time, the maximum movement height of the trapped particles under AC voltage is 2-8 cm, so the particles inside the trap cannot escape the trap. Based on the force analysis of particles, it can not only analyze the active capture mechanism of the convex-shaped trap, but also provide a theoretical basis for the subsequent establishment of the capture range calculation model of the convex-shaped trap. On this basis, this paper realizes the performance test and optimization design of the convex-shaped trap.
According to the charged motion and collision dynamics characteristics of metal particles, the model for calculating the capture probability of the convex-shaped trap is established, and the structural parameters of the convex-shaped trap should be optimized considering the capture ability of trap. The results illustrate when the diameter of trap is 60 cm and the depth of trap is 30 cm in the 1000 kV GIS/GIL of Sutong GIL Comprehensive Pipe Corridor, the particle suppression effect of the convex-shaped trap is optimal. Further, the area near the convex-shaped trap with capture rate over 90 % is defined as the effective capture range considering the randomness of particle collision reflection angle, and the effective capture range of the convex-shaped trap reaches 32 cm. In this paper, a general optimization design method for convex-shaped traps is proposed, which is also suiTab.for optimizing other voltage levels of convex-shaped traps.
Finally, by analyzing the axial electric field distribution of the grid trap and the convex-shaped trap, it is shown that the grid trap can enhance the effective capture range of the convex-shaped trap. To improve the particle suppression effect near the insulator, a synergism arrangement methodology of the grid trap and the convex-shaped trap near the convex surface of basin insulator is proposed.
The grid trap can effectively suppress the metal particles below the insulator. Since the grid trap can increase the capture range of the convex-shaped trap, the convex-shaped trap can be arranged far from the insulator. By optimizing the synergism arrangement of two traps, defining the optimal arrangement methodology. Length of the grid trap arranged near the insulator cannot be less than 40 cm, and the effective capture range of the convex-shaped trap matched with it reaches up to 65 cm. The protection range of the trap combination for insulators can reach up to 225 cm. Based on the theoretical analysis, the trap combination can not only effectively protect the basin insulator, but also improve the insulation level of the three-pillar insulator.
In this paper, the theoretical analysis about the active capture mechanism of the convex-shaped traps, the design scheme of the convex-shaped traps for UHV GIS/GIL and the synergism arrangement methodology of the grid and convex-shaped traps are proposed. This methodology provides a reliable technical mean for capturing the metal particles in UHV GIS / GIL.
耿秋钰, 胡智莹, 李庆民, 庄添鑫, 刘焱. 特高压交流GIS/GIL拔孔型陷阱优化设计与协同布置方法研究[J]. 电工技术学报, 0, (): 221680-221680.
Geng Qiuyu, Hu Zhiying, Li Qingmin, Zhuang Tianxin, Liu Yan. Research on Optimal Design and Synergism Arrangement Methodology of Convex-Shaped Traps for Ultra High Voltage AC GIS/GIL Applications. Transactions of China Electrotechnical Society, 0, (): 221680-221680.
[1] 谢莉, 黄韬, 陶莉, 等. 两回±800kV特高压直流线路交叉跨越时的地面合成电场计算及设计应用[J]. 南方电网技术, 2021, 15(10): 12-17.
Xie Li, Huang Tao, Tao Li, et al.Calculation and design application of ground total electric field generated by two crossing ±800 kV UHVDC transmission lines[J]. Southern Power System Technology, 2021, 15(10): 12-17.
[2] 范建斌, 李鹏, 李金忠, 等. ±800kV特高压直流GIL关键技术研究[J]. 中国电机工程学报, 2008, 28(13): 1-7.
Fan Jianbin, Li Peng, Li Jinzhong, et al.Study on key technology of ±800 kV UHVDC GIL[J]. Proceedings of the CSEE, 2008, 28(13): 1-7.
[3] 李杰, 李晓昂, 吕玉芳, 等. 正弦振动激励下GIS内自由金属微粒运动特性[J]. 电工技术学报, 2021, 36(21): 4580-4589, 4597.
Li Jie, Li Xiaoang, Lü Yufang, et al.Motion characteristics of free metal particles in GIS under sinusoidal vibration[J]. Transactions of China Electrotechnical Society, 2021, 36(21): 4580-4589, 4597.
[4] 姚雨杭, 潘成, 唐炬, 等. 交直流复合电压下流动变压器油中金属微粒运动规律和局部放电特性研究[J]. 电工技术学报, 2021, 36(15): 3101-3112.
Yao Yuhang, Pan Cheng, Tang Ju, et al.Motion behaviors and partial discharge characteristics of metallic particles in moving transformer oil under AC/DC composite voltage[J]. Transactions of China Electrotechnical Society, 2021, 36(15): 3101-3112.
[5] 徐洋, 刘卫东, 高文胜. 使用粉尘图法测量交流电压下GIS绝缘表面电场电荷分布的影响因素研究[J]. 电瓷避雷器, 2020(3): 205-212.
Xu Yang, Liu Weidong, Gao Wensheng.Research on the influence factor of the dust figure used for the measurement of the surface charge and electric field distribution of GIS insulator under AC voltage[J]. Insulators and Surge Arresters, 2020(3): 205-212.
[6] 李佳, 杨丽薇, 于佼. GIS/GIL设备中金属微粒污染研究综述[J]. 电工电气, 2022(3): 1-7.
Li Jia, Yang Liwei, Yu Jiao.Review on metal particle contamination in GIS/GIL equipment[J]. Electrotechnics Electric, 2022(3): 1-7.
[7] 常亚楠, 王健, 李庆民, 等. 交直流气体绝缘管道输电装备微粒污染治理措施研究进展[J]. 高压电器, 2021, 57(10): 91-100, 110.
Chang Yanan, Wang Jian, Li Qingmin, et al.Research progress of particle contamination suppression measures in AC and DC gas-insulated transmission equipment[J]. High Voltage Apparatus, 2021, 57(10): 91-100, 110.
[8] 詹振宇, 宋曼青, 律方成, 等. 交流环保GIL中微粒运动规律及陷阱抑制措施研究[J]. 中国电机工程学报, 2019, 39(增刊1): 278-286.
Zhan Zhenyu, Song Manqing, Lü Fangcheng, et al.Study on particle movement and trap suppression in AC environmentally friendly GIL[J]. Proceedings of the CSEE, 2019, 39(S1): 278-286.
[9] Banford H M.Particles and breakdown in SF6-insulated apparatus[J]. Proceedings of the Institution of Electrical Engineers, 1976, 123(9): 877.
[10] Srivastava K D, van Heeswijk R G. Dielectric coatings-effect on breakdown and particle movement in gitl systems[J]. IEEE Transactions on Power Apparatus and Systems, 1985, PAS-104(1): 22-31.
[11] Kemeny G A. Vertically aligned gas insulated transmission line: US4096345[P].1978-06-20.
[12] Dale S J, Hopkins M D. Methods of particle control in SF6 insulated CGIT systems[J]. IEEE Transactions on Power Apparatus and Systems, 1982, PAS-101(6): 1654-1663.
[13] Trump J G. Dust precipitator: US3515939[P].1970-06-02.
[14] Bowman G K. Particle trap contact for gas insulated transmission lines: US4084064[P].1978-04-11.
[15] 刘鹏, 张语桐, 吴泽华, 等. ±320kV直流GIL微粒陷阱关键结构参数分析及优化[J/OL]. 高电压技术: 1-12. DOI: 10.13336/j.1003-6520.hve.20221207.
Liu Peng, Zhang Yutong, Wu Zehua, et al.Key parameters analysis and structure optimization of particle trap in ± 320kV DC GIL[J/OL]. High Voltage Engineering: 1-12. DOI: 10.13336/j.1003-6520.hve.20221207.
[16] Berg T, Juhre K, Fedtke T, et al.Specific Characteristics of Particle Traps for Application in DC gas-insulated transmission lines (DC GIL)[C]//VDE High Voltage Technology 2020; ETG-Symposium, Online, 2020: 1-8.
[17] 李忠磊, 赵宇彤, 韩涛, 等. 高压电缆半导电屏蔽材料研究进展与展望[J]. 电工技术学报, 2022, 37(9): 2341-2354.
Li Zhonglei, Zhao Yutong, Han Tao, et al.Research progress and prospect of semi-conductive shielding composites for high-voltage cables[J]. Transactions of China Electrotechnical Society, 2022, 37(9): 2341-2354.
[18] 薛乃凡, 李庆民, 刘智鹏, 等. 微纳粉尘运动行为与微弱放电探测技术研究进展[J]. 电工技术学报, 2022, 37(13): 3380-3392.
Xue Naifan, Li Qingmin, Liu Zhipeng, et al.Research advances of the detection technology for kinetic behavior and weak discharge of the micro-nano dust[J]. Transactions of China Electrotechnical Society, 2022, 37(13): 3380-3392.
[19] Nakata R, Johenning W J. Particle trapping sheath coupling for enclosed electric bus apparatus: US4042774[P].1977-08-16.
[20] 孙文杰, 张磊, 毛佳乐, 等. 电力设备绝缘损伤形式及自修复材料研究进展[J]. 电工技术学报, 2022, 37(8): 2107-2116.
Sun Wenjie, Zhang Lei, Mao Jiale, et al.Types of insulation damage and self-healing materials of power equipment: a review[J]. Transactions of China Electrotechnical Society, 2022, 37(8): 2107-2116.
[21] 刘鹏, 吴泽华, 朱思佳, 等. 缺陷对交流1100kV GIL三支柱绝缘子电场分布影响的仿真[J]. 电工技术学报, 2022, 37(2): 469-478.
Liu Peng, Wu Zehua, Zhu Sijia, et al.Simulation on electric field distribution of 1100kV AC tri-post insulator influenced by defects[J]. Transactions of China Electrotechnical Society, 2022, 37(2): 469-478.
[22] 李庆民, 王健, 李伯涛, 等. GIS/GIL中金属微粒污染问题研究进展[J]. 高电压技术, 2016, 42(3): 849-860.
Li Qingmin, Wang Jian, Li Botao, et al.Review on metal particle contamination in GIS/GIL[J]. High Voltage Engineering, 2016, 42(3): 849-860.
[23] 丁梓桉, 黄旭炜, 李庆民, 等. 两种功能化硅氧基聚酰亚胺薄膜的高频沿面放电寿命对比研究[J]. 电工技术学报, 2021, 36(13): 2719-2729.
Ding Zian, Huang Xuwei, Li Qingmin, et al.A comparative study on the high frequency creeping discharge lifetime of two kinds of functionalized siloxy-containing polyimide films[J]. Transactions of China Electrotechnical Society, 2021, 36(13): 2719-2729.
[24] Khan Y, Oda A, Okabe S, et al.Wire particle motion behavior and breakdown characteristics around different shaped spacers within diverging air gap[J]. IEEJ Transactions on Power and Energy, 2003, 123(11): 1288-1295.
[25] 杨磊, 赵涛, 刘乐康, 等. 基于恢复系数实测结果的盆式绝缘子附近微粒运动规律分析[J]. 高电压技术, 2020, 46(3): 867-875.
Yang Lei, Zhao Tao, Liu Lekang, et al.Analysis of particle motion law near basin insulator based on measured results of recovery coefficient[J]. High Voltage Engineering, 2020, 46(3): 867-875.
[26] 刘鹏, 李智凯, 田汇冬, 等. 直流电压下气体绝缘输电线路中微粒运动特性研究及微粒陷阱效能分析[J]. 中国电机工程学报, 2022, 42(15): 5740-5751.
Liu Peng, Li Zhikai, Tian Huidong, et al.Research on motion characteristics of metal particles and capture efficiency of particle traps in gas insulated transmission lines under DC voltage[J]. Proceedings of the CSEE, 2022, 42(15): 5740-5751.
[27] 傅中, 程登峰, 马径坦, 等. 直流叠加冲击电压下GIS放电特性研究综述[J]. 高压电器, 2020, 56(7): 94-102.
Fu Zhong, Cheng Dengfeng, Ma Jingtan, et al.Investigation of research about discharge characteristics of GIS under combined voltage of DC and impulse[J]. High Voltage Apparatus, 2020, 56(7): 94-102.
[28] 王健, 常亚楠, 王靖瑞, 等. 基于捕捉效用分析的直流GIL微粒陷阱设计与参数优化[J]. 中国电机工程学报, 2020, 40(15): 5050-5061.
Wang Jian, Chang Yanan, Wang Jingrui, et al.Design and optimization of particle traps in DC GIL based on the capture effect analysis[J]. Proceedings of the CSEE, 2020, 40(15): 5050-5061.
[29] 汤广福, 庞辉, 贺之渊. 先进交直流输电技术在中国的发展与应用[J]. 中国电机工程学报, 2016, 36(7): 1760-1771.
Tang Guangfu, Pang Hui, He Zhiyuan.R & D and application of advanced power transmission technology in China[J]. Proceedings of the CSEE, 2016, 36(7): 1760-1771.
[30] 汪佛池, 杨磊, 曹东亮, 等. 直流GIL中球状自由导电微粒的运动及陷阱抑制[J]. 高电压技术, 2018, 44(10): 3141-3149.
Wang Fochi, Yang Lei, Cao Dongliang, et al.Motion and trap suppression of spherical free conducting particles in DC GIL[J]. High Voltage Engineering, 2018, 44(10): 3141-3149.