[1] Gangopadhyay P, Chawla M, Dal Monte O, et al.Prefrontal-amygdala circuits in social decision-making[J]. Nature Neuroscience, 2021, 24(1): 5-18.
[2] 陶然, 赵冬梅, 王浩翔. 基于信息间隙决策理论的配电网韧性提升规划方法[J]. 电力系统自动化, 2022, 46(9): 32-41.
Tao Ran, Zhao Dongmei, Wang Haoxiang.Planning method for resilience enhancement of distribution network based on information gap decision theory[J]. Automation of Electric Power Systems, 2022, 46(9): 32-41.
[3] Jonathan J.How beat perception Co-opts motor neurophysiology[J]. Trends in Cognitive Sciences, 2021, 25(2): 137-150.
[4] Caiola M, Holmes M H.Model and analysis for the onset of parkinsonian firing patterns in a simplified basal Ganglia[J]. International Journal of Neural Systems, 2019, 29(1): 1850021.
[5] 郭磊, 陈云阁, 王瑶, 等. 基于C0复杂度的磁刺激内关穴的脑功能网络构建与分析[J]. 电工技术学报, 2017, 32(12): 155-163.
Guo Lei, Chen Yunge, Wang Yao, et al.Construction and analysis of brain functional network based on C0 complexity under magnetic stimulation at acupoint of Neiguan[J]. Transactions of China Electrotechnical Society, 2017, 32(12): 155-163.
[6] 熊慧, 王玉领, 付浩, 等. 一种应用于经颅磁刺激脉冲宽度可调的节能型激励源[J]. 电工技术学报, 2020, 35(4): 679-686.
Xiong Hui, Wang Yuling, Fu Hao, et al.An energy efficient excitation source for transcranial magnetic stimulation with controllable pulse width[J]. Transactions of China Electrotechnical Society, 2020, 35(4): 679-686.
[7] 尚莹春, 张涛. 重复经颅磁刺激对认知功能的作用及其分子机理的研究进展[J]. 电工技术学报, 2021, 36(4): 685-692.
Shang Yingchun, Zhang Tao.The role of repetitive transcranial magnetic stimulation on cognitive function and its underlying molecular mechanism[J]. Transactions of China Electrotechnical Society, 2021, 36(4): 685-692.
[8] 张帅, 崔琨, 史勋, 等. 经颅磁声电刺激参数对神经元放电模式的影响分析[J]. 电工技术学报, 2019, 34(18): 3741-3749.
Zhang Shuai, Cui Kun, Shi Xun, et al.Effect analysis of transcranial magneto-acousto-electrical stimulation parameters on neural firing patterns[J]. Transactions of China Electrotechnical Society, 2019, 34(18): 3741-3749.
[9] Norton S J.Can ultrasound be used to stimulate nerve tissue?[J]. Biomedical Engineering Online, 2003, 2: 6.
[10] 刘世坤, 张鑫山, 周晓青, 等. 经颅磁声耦合电刺激技术应用于小鼠的实验研究[J]. 生物医学工程研究, 2018, 37(1): 11-15.
Liu Shikun, Zhang Xinshan, Zhou Xiaoqing, et al.Experimental study in mice on the technology of transcranial magneto-acoustic coupling electrical stimulation[J]. Journal of Biomedical Engineering Research, 2018, 37(1): 11-15.
[11] Zhang Yanqiu, Zhang Mohan, Ling Zichao, et al.The influence of transcranial magnetoacoustic stimulation parameters on the basal Ganglia-thalamus neural network in parkinson's disease[J]. Frontiers in Neuroscience, 2021, 15: 761720.
[12] 张帅, 许家悦, 李梦迪, 等. 基于皮层神经元模型的经颅磁声电刺激神经网络放电活动仿真分析[J]. 电工技术学报, 2021, 36(18): 3851-3859.
Zhang Shuai, Xu Jiayue, Li Mengdi, et al.Simulation of the discharge activity of neural network under transcranial magneto-acousto-electrical stimulation based on cortical neuron model[J]. Transactions of China Electrotechnical Society, 2021, 36(18): 3851-3859.
[13] Valsky D, Heiman Grosberg S, Israel Z, et al.What is the true discharge rate and pattern of the striatal projection neurons in Parkinson's disease and Dystonia?[J]. eLife, 2020, 9: e57445.
[14] 王芳, 沈文超, 胡笑楠, 等. 皮质-基底神经节-丘脑-皮质环路与抑郁症状调节的机制探讨[J]. 临床精神医学杂志, 2021, 31(4): 326-329.
Wang Fang, Shen Wenchao, Hu Xiaonan, et al.Discussion on the mechanism of cortical-striatum-thalamus-cortical circuit and symptom regulation of depression[J]. Journal of Clinical Psychiatry, 2021, 31(4): 326-329.
[15] Rubin J E, Vich C, Clapp M, et al.The credit assignment problem in cortico-basal Ganglia-thalamic networks: a review, a problem and a possible solution[J]. The European Journal of Neuroscience, 2021, 53(7): 2234-2253.
[16] Khawaldeh S, Tinkhauser G, Shah S A, et al.Subthalamic nucleus activity dynamics and limb movement prediction in Parkinson's disease[J]. Brain, 2020, 143(2): 582-596.
[17] Shriki O, Hansel D, Sompolinsky H.Rate models for conductance-based cortical neuronal networks[J]. Neural Computation, 2003, 15(8): 1809-1841.
[18] Mulcahy G, Atwood B, Kuznetsov A.Basal Ganglia role in learning rewarded actions and executing previously learned choices: healthy and diseased states[J]. PLoS One, 2020, 15(2): e0228081.
[19] Lerner T N, Holloway A L, Seiler J L.Dopamine, updated: reward prediction error and beyond[J]. Current Opinion in Neurobiology, 2021, 67: 123-130.
[20] Martje G.Subthalamic nucleus conditioning reduces premotor-motor interaction in Parkinson's disease[J]. Parkinsonism & Related Disorders, 2022, 96: 6-12.
[21] 曾朝蓉, 岳冬, 孙伟, 等. 亚硒酸钠对帕金森模型大鼠运动功能及脑黑质抗氧化能力的影响[J]. 中华行为医学与脑科学杂志, 2020, 29(5): 413-418.
Zeng Chaorong, Yue Dong, Sun Wei, et al.Effects of sodium selenite on motor function and antioxidant capacity of substantia nigra in rats with Parkinson's disease[J]. Chinese Journal of Behavioral Medicine and Brain Science, 2020, 29(5): 413-418.
[22] Abdolvahed, Narmashiri.The effects of 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP) on the cognitive and motor functions in rodents: a systematic review and meta-analysis[J]. Neuroscience & Biobehavioral Reviews, 2022, 140: 104792.
[23] Palmisano C, Brandt G, Vissani M, et al.Gait initiation in parkinson's disease: impact of dopamine depletion and initial stance condition[J]. Frontiers in Bioengineering and Biotechnology, 2020, 8: 137.
[24] Pelicioni P, Lord S, Okubo Y, et al.People with parkinson's disease exhibit reduced cognitive and motor cortical activity when undertaking complex stepping tasks requiring inhibitory control[J]. Neurorehabilitation and Neural Repair, 2020, 34(12): 1088-1098.
[25] Vich C.Corticostriatal synaptic weight evolution in a two-alternative forced choice task: a computational study[J]. Communications in Nonlinear Science and Numerical Simulation, 2020, 82: 105048.
[26] Tseng P, Chang C, Chiau H Y, et al.The dorsal attentional system in oculomotor learning of predictive information[J]. Frontiers in Human Neuroscience, 2013, 7: 404.
[27] 郭磊, 刘东钊, 黄凤荣, 等. 基于突触可塑性的自适应脉冲神经网络在高斯白噪声刺激下的抗扰功能研究[J]. 电工技术学报, 2020, 35(2): 225-235.
Guo Lei, Liu Dongzhao, Huang Fengrong, et al.Research on disturbance rejection of adaptive spiking neural network based on synaptic plasticity under white Gaussian noise[J]. Transactions of China Electrotechnical Society, 2020, 35(2): 225-235.
[28] 时凯旋, 刘晓莉, 乔德才. 皮层-基底神经节环路功能性连接与PD运动防治的神经可塑性机制研究进展[J]. 生理科学进展, 2019, 50(1): 25-29.
Shi Kaixuan, Liu Xiaoli, Qiao Decai.Exercise-induced neuroplasticity targeting cortico-basal ganglionic functional circuits in Parkinson's disease[J]. Progress in Physiological Sciences, 2019, 50(1): 25-29.
[29] Grafton S T, Volz L J.From ideas to action: the prefrontal-premotor connections that shape motor behavior[J]. Handbook of Clinical Neurology, 2019, 163: 237-255.
[30] Calabresi P, Picconi B, Tozzi A, et al.Direct and indirect pathways of basal Ganglia: a critical reappraisal[J]. Nature Neuroscience, 2014, 17(8): 1022-1030.
[31] Kim T, Hamade K C, Todorov D, et al.Reward based motor adaptation mediated by basal Ganglia[J]. Frontiers in Computational Neuroscience, 2017, 11: 19. |