[1] 徐明杰, 赵健, 王小宇, 等. 基于多任务联合模型的居民用电模式分类方法[J]. 电工技术学报, 2022, 37(21): 5490-5502.
Xu Mingjie, Zhao Jian, Wang Xiaoyu, et al.Residential electricity consumption pattern classification method based on multi-task joint model[J]. Transactions of China Electrotechnical Society, 2022, 37(21): 5490-5502.
[2] 范睿, 孙润稼, 刘玉田. 考虑空调负荷需求响应的负荷恢复量削减方法[J]. 电工技术学报, 2022, 37(11): 2869-2877.
Fan Rui, Sun Runjia, Liu Yutian.A load restoration amount reduction method considering demand response of air conditioning loads[J]. Transactions of China Electrotechnical Society, 2022, 37(11): 2869-2877.
[3] 金国彬, 潘狄, 陈庆, 等. 考虑源荷不确定性的直流配电网模糊随机日前优化调度[J]. 电工技术学报, 2021, 36(21): 4517-4528.
Jin Guobin, Pan Di, Chen Qing, et al.Fuzzy random day-ahead optimal dispatch of DC distribution network considering the uncertainty of source-load[J]. Transactions of China Electrotechnical Society, 2021, 36(21): 4517-4528.
[4] 张潼, 于鹤洋, 田江, 等. 基于非侵入式负荷辨识的聚合负荷需求响应能力在线评估[J]. 电力工程技术, 2020, 39(6): 19-25, 65.
Zhang Tong, Yu Heyang, Tian Jiang, et al.Online aggregation monitoring of low-voltage power load demand response capability based on non-intrusive load identification[J]. Jiangsu Electrical Engineering, 2020, 39(6): 19-25, 65.
[4] 张潼, 于鹤洋, 田江, 等. 基于非侵入式负荷辨识的聚合负荷需求响应能力在线评估[J]. 电力工程技术, 2020(6):19-25,65.
Zhang Tong, Yu Heyang, Tian Jiang, et al.Online aggregation monitoring of low-voltage power load demand responsecapability based on non-intrusive load identification[J]. Electric Power Engineering Technology, 2020(6):19-25,65.
[5] 雷怡琴, 孙兆龙, 叶志浩, 等. 电力系统负荷非侵入式监测方法研究[J]. 电工技术学报, 2021, 36(11): 2288-2297.
Lei Yiqin, Sun Zhaolong, Ye Zhihao, et al.Research on non-invasive load monitoring method in power system[J]. Transactions of China Electrotechnical Society, 2021, 36(11): 2288-2297.
[6] Hart G W.Nonintrusive appliance load monitoring[J]. Proceedings of the IEEE, 1992, 80(12): 1870-1891.
[7] 余贻鑫, 刘博, 栾文鹏. 非侵入式居民电力负荷监测与分解技术[J]. 南方电网技术, 2013, 7(4): 49-51.
Yu Yixin, Liu Bo, Luan Wenpeng.Nonintrusive residential load monitoring and decomposition technology[J]. Southern Power System Technology, 2013, 7(4): 49-51.
[8] Liang Jian, Ng S K K, Kendall G, et al. Load signature study—part I: basic concept, structure, and methodology[J]. IEEE Transactions on Power Delivery, 2010, 25(2): 551-560.
[9] 程祥, 李林芝, 吴浩, 等. 非侵入式负荷监测与分解研究综述[J]. 电网技术, 2016, 40(10): 3108-3117.
Cheng Xiang, Li Linzhi, Wu Hao, et al.A survey of the research on non-intrusive load monitoring and disaggregation[J]. Power System Technology, 2016, 40(10): 3108-3117.
[10] 徐青山, 娄藕蝶, 郑爱霞, 等. 基于近邻传播聚类和遗传优化的非侵入式负荷分解方法[J]. 电工技术学报, 2018, 33(16): 3868-3878.
Xu Qingshan, Lou Oudie, Zheng Aixia, et al.A non-intrusive load decomposition method based on affinity propagation and genetic algorithm optimization[J]. Transactions of China Electrotechnical Society, 2018, 33(16): 3868-3878.
[11] 尹立亚. 非侵入式负荷特征提取与识别算法的研究[D]. 北京: 华北电力大学.
[12] 孙毅, 张璐, 赵洪磊, 等. 基于动态自适应粒子群算法的非侵入式家居负荷分解方法[J]. 电网技术, 2018, 42(6): 1819-1826.
Sun Yi, Zhang Lu, Zhao Honglei, et al.A non-intrusive household load monitoring method based on dynamic adaptive particle swarm optimization algorithm[J]. Power System Technology, 2018, 42(6): 1819-1826.
[13] 林顺富, 詹银枫, 李毅, 等. 基于CNN-BiLSTM与DTW的非侵入式住宅负荷监测方法[J]. 电网技术, 2022, 46(5): 1973-1981.
Lin Shunfu, Zhan Yinfeng, Li Yi, et al.Non-intrusive residential load monitoring method based on CNN-BiLSTM and DTW[J]. Power System Technology, 2022, 46(5): 1973-1981.
[14] Buddhahai B, Wongseree W, Rakkwamsuk P.A non-intrusive load monitoring system using multi-label classification approach[J]. Sustainable Cities and Society, 2018, 39: 621-630.
[15] Tabatabaei S M, Dick S, Xu W.Toward non-intrusive load monitoring via multi-label classification[J]. IEEE Transactions on Smart Grid, 2017, 8(1): 26-40.
[16] Liu Yu, Liu Congxiao, Shen Yiwen, et al.Non-intrusive energy estimation using random forest based multi-label classification and integer linear programming[J]. Energy Reports, 2021, 7: 283-291.
[17] Li Ding, Sawyer K, Dick S.Disaggregating household loads via semi-supervised multi-label classification[C]//2015 Annual Conference of the North American Fuzzy Information Processing Society (NAFIPS) held jointly with 2015 5th World Conference on Soft Computing (WConSC), Redmond, WA, USA, 2015: 1-5.
[18] 周东国, 张恒, 周洪, 等. 基于状态特征聚类的非侵入式负荷事件检测方法[J]. 电工技术学报, 2020, 35(21): 4565-4575.
Zhou Dongguo, Zhang Heng, Zhou Hong, et al.Non-intrusive load event detection method based on state feature clustering[J]. Transactions of China Electrotechnical Society, 2020, 35(21): 4565-4575.
[19] 张致强, 周步祥, 张冰, 等. 计及小波设计和半监督机器学习的非侵入式负载识别[J]. 电力系统及其自动化学报, 2020, 32(5): 143-150.
Zhang Zhiqiang, Zhou Buxiang, Zhang Bing, et al.Wavelet design and semi-supervised machine learning for non-intrusive load identification[J]. Proceedings of the CSU-EPSA, 2020, 32(5): 143-150.
[20] Le T T H, Heo S, Kim H. Toward load identification based on the Hilbert transform and sequence to sequence long short-term memory[J]. IEEE Transactions on Smart Grid, 2021, 12(4): 3252-3264.
[21] 牟魁翌, 杨洪耕. 基于PLA-GDTW支持向量机的非侵入式负荷监测方法[J]. 电网技术, 2019, 43(11): 4185-4192.
Mu Kuiyi, Yang Honggeng.Non-intrusive load identification method based on PLA-GDTW support vector machine[J]. Power System Technology, 2019, 43(11): 4185-4192.
[22] 赵文清, 张诗满, 李刚. 基于聚类和关联分析的居民用户非侵入式负荷分解[J]. 电力自动化设备, 2020, 40(6): 8-14.
Zhao Wenqing, Zhang Shiman, Li Gang.Non-intrusive load decomposition of residential users based on cluster and association analysis[J]. Electric Power Automation Equipment, 2020, 40(6): 8-14.
[23] Yang Dongsheng, Gao Xiaoting, Kong Liang, et al.An event-driven convolutional neural architecture for non-intrusive load monitoring of residential appliance[J]. IEEE Transactions on Consumer Electronics, 2020, 66(2): 173-182.
[24] 武昕, 于金莹, 彭林, 等. 基于用户边缘侧事件解析的工业电力负荷非侵入式感知辨识[J]. 电力系统自动化, 2021, 45(4): 29-37.
Wu Xin, Yu Jinying, Peng Lin, et al.Non-intrusive perception and identification of industrial power load based on analysis of event on user edge[J]. Automation of Electric Power Systems, 2021, 45(4): 29-37.
[25] Liu Yu, Liu Congxiao, Wang Wen, et al.A robust non-intrusive load disaggregation method with roof-top photovoltaics[J]. Electric Power Systems Research, 2022, 208: 107887.
[26] Liu Yu, Liu Congxiao, Ling Qicheng, et al.Toward smart distributed renewable generation via multi-uncertainty featured non-intrusive interactive energy monitoring[J]. Applied Energy, 2021, 303: 117689.
[27] 牛卢璐, 贾宏杰. 一种适用于非侵入式负荷监测的暂态事件检测算法[J]. 电力系统自动化, 2011, 35(9): 30-35.
Niu Lulu, Jia Hongjie.Transient event detection algorithm for non-intrusive load monitoring[J]. Automation of Electric Power Systems, 2011, 35(9): 30-35.
[28] Torquato R, Shi Qingxin, Xu W, et al.A Monte Carlo simulation platform for studying low voltage residential networks[J]. IEEE Transactions on Smart Grid, 2014, 5(6): 2766-2776.
[29] Kelly J, Knottenbelt W.The UK-DALE dataset, domestic appliance-level electricity demand and whole-house demand from five UK homes[J]. Scientific Data, 2015, 2(1): 1-14.
[30] 冯人海, 袁万琦, 葛磊蛟. 基于图信号交替优化的居民用户非侵入式负荷监测方法[J]. 中国电机工程学报, 2022, 42(4): 1355-1364.
Feng Renhai, Yuan Wanqi, Ge Leijiao.Non-intrusive load monitoring method for resident users based on alternating optimization in graph signal[J]. Proceedings of the CSEE, 2022, 42(4): 1355-1364.
[31] Song J, Lee Yonggu, Hwang E.Time-frequency mask estimation based on deep neural network for flexible load disaggregation in buildings[J]. IEEE Transactions on Smart Grid, 2021, 12(4): 3242-3251.
[32] Batra N, Kelly J, Parson O, et al.NILMTK: an open source toolkit for non-intrusive load monitoring[C]//Proceedings of the 5th international conference on Future energy systems, Cambridge, United Kingdom, 2014: 265-276. |