Establishment of Analytical Model of Active Magnetic Bearing Considering Magnetic Circuit Distribution Characteristics and Study on Influencing Factors of Support Performance
Ge Baojun, Yang Zihao, Tao Dajun, Han Jichao, Huang Qiutong
National and Local Joint Engineering Research Center of Large Electric Machines and Heat Transfer Technology Harbin University of Science and Technology Harbin 150080 China
Active magnetic bearing (AMB) has been widely used due to its advantages of no friction, controllable damping, and long service life. Currently, the research on the magnetic field distribution of AMB mainly focus on the performance characteristics of its fixed structure. It is necessary to establish an optimization and design judgment for the structure of the electromagnetic bearing based on the dynamic operation performance requirements and the influence of the structure according to relevant research results. Therefore, this paper proposes an accurate magnetic circuit analytical model of AMB considering the magnetic circuit distribution characteristics to analyze the influence of its structure on the AMB performance.
Firstly, the concept of “pole arc coefficient” of motor design is introduced to define the stator structure of AMB, and the formula for pole area, winding area, and ampere turns by pole arc coefficient is defined. Secondly, the magnetic resistance of the air gap, stator, and rotor is calculated by considering the nonlinear permeability of core material, pole edge effect, magnetic field penetration depth, and other factors. Finally, a method to establish the electromagnetic force calculation model of AMB with different structures is proposed based on Maxwell's tension method.
In order to verify the proposed analytical model, the corresponding two-dimensional finite element model is established to compare with the analytical model in terms of the air gap magnetic density and radial electromagnetic force. The calculation results of the two methods are entirely consistent, and the maximum error is less than 3.5 %. On the other hand, a corresponding experimental platform has been built to verify the accuracy of the model. It is verified that the analytical model can meet the engineering requirements.
The linear control strategy has a poor control effect on the current stiffness coefficient and displacement stiffness coefficient of AMB in the nonlinear section. Through the established analytical model, the influence of the pole arc coefficient, air gap length, excitation current and other parameters on the electromagnetic force of AMB are studied. Then, suggestions for the optimal design of the AMB are given.
The following conclusions can be drawn from this study: (1) Under the condition that the inner diameter, outer diameter, and axial length of the AMB stator remain unchanged, the proportion of the core magnetic resistance increases with the increase of the pole arc coefficient. Because the magnetic density is square with the electromagnetic force, the influence of the pole arc coefficient on the nonlinear degree of current stiffness coefficient and displacement stiffness coefficient becomes more apparent. (2) In designing AMB, ensuring its maximum load capacity, the magnetic circuit structure with high air gap magnetic resistance should be selected as far as possible to weaken the nonlinear characteristics of the current stiffness coefficient and displacement stiffness coefficient.
戈宝军, 杨子豪, 陶大军, 韩继超, 黄秋彤. 计及磁路分布特性的电磁轴承解析模型建立与支撑性能影响因素研究[J]. 电工技术学报, 2023, 38(8): 2025-2035.
Ge Baojun, Yang Zihao, Tao Dajun, Han Jichao, Huang Qiutong. Establishment of Analytical Model of Active Magnetic Bearing Considering Magnetic Circuit Distribution Characteristics and Study on Influencing Factors of Support Performance. Transactions of China Electrotechnical Society, 2023, 38(8): 2025-2035.
[1] 周天豪, 陈磊, 祝长生, 等. 基于自适应变步长最小均方算法的磁悬浮高速电机不平衡补偿[J]. 电工技术学报, 2020, 35(9): 1900-1911.
Zhou Tianhao, Chen Lei, Zhu Changsheng, et al.Unbalance compensation for magnetically levitated high-speed motors based on adaptive variable step size least mean square algorithm[J]. Transactions of China Electrotechnical Society, 2020, 35(9): 1900-1911.
[2] 巩磊, 杨智, 祝长生, 等. 基于极性切换自适应陷波器的磁悬浮高速电机刚性转子自动平衡[J]. 电工技术学报, 2020, 35(7): 1410-1421.
Gong Lei, Yang Zhi, Zhu Changsheng, et al.Automatic balancing for rigid rotor of magnetically levitated high-speed motors based on adaptive Notch filter with polarity switching[J]. Transactions of China Electrotechnical Society, 2020, 35(7): 1410-1421.
[3] 张维煜, 朱熀秋, 鞠金涛, 等. 磁悬浮轴承研究现状及其发展[J]. 轴承, 2016(12): 56-63.
Zhang Weiyu, Zhu Huangqiu, Ju Jintao, et al.Research status and development of magnetic bearings[J]. Bearing, 2016(12): 56-63.
[4] 李万杰, 张国民, 王新文, 等. 飞轮储能系统用超导电磁混合磁悬浮轴承设计[J]. 电工技术学报, 2020, 35(增刊1): 10-18.
Li Wanjie, Zhang Guomin, Wang Xinwen, et al.Integration design of high-temperature supercondu- cting bearing and electromagnetic thrust bearing for flywheel energy storage system[J]. Transactions of China Electrotechnical Society, 2020, 35(S1): 10-18.
[5] 孙玉坤, 郭帅坡, 杨帆. 飞轮储能用混合磁悬浮轴承温度场分析[J]. 电机与控制应用, 2019, 46(8): 76-81.
Sun Yukun, Guo Shuaipo, Yang Fan.Temperature field analysis of hybrid magnetic bearings for flywheel energy storage[J]. Electric Machines & Control Application, 2019, 46(8): 76-81.
[6] 周瑾, 高天宇, 董继勇, 等. 基于Isight的径向磁悬浮轴承结构优化设计[J]. 轴承, 2018(7): 6-11.
Zhou Jin, Gao Tianyu, Dong Jiyong, et al.Optimal design for structure of radial magnetic bearings based on Isight[J]. Bearing, 2018(7): 6-11.
[7] 白文鑫, 刘文韬. 基于遗传算法的零偏置磁轴承定子结构优化[J]. 机械工程与自动化, 2019(4): 31-34.
Bai Wenxin, Liu Wentao.Structure optimization of zero bias magnetic bearing stator based on genetic algorithm[J]. Mechanical Engineering & Automation, 2019(4): 31-34.
[8] 林子豪, 胡业发, 冉少林, 等. 3自由度混合磁轴承支承特性及仿真分析[J]. 机械设计与研究, 2019, 35(5): 32-35, 40.
Lin Zihao, Hu Yefa, Ran Shaolin, et al.Simulation study on supporting characteristics of three-DOF hybrid magnetic bearings[J]. Machine Design & Research, 2019, 35(5): 32-35, 40.
[9] Shakibapour F, Rahideh A, Mardaneh M.2D analytical model for heteropolar active magnetic bearings considering eccentricity[J]. IET Electric Power Applications, 2018, 12(5): 614-626.
[10] 张云鹏, 刘淑琴, 李红伟, 等. 基于磁路分析的轴向混合磁轴承径向承载力解析计算[J]. 电工技术学报, 2012, 27(5): 137-142.
Zhang Yunpeng, Liu Shuqin, Li Hongwei, et al.Calculation of radial electromagnetic force of axial hybrid magnetic bearing based on magnetic circuit analysis[J]. Transactions of China Electrotechnical Society, 2012, 27(5): 137-142.
[11] Romanenko A, Smirnov A, Jastrzebski R P, et al.Losses estimation and modelling in active magnetic bearings[C]//2014 16th European Conference on Power Electronics and Applications, Lappeenranta, Finland, 2014: 1-8.
[12] Le Yun, Fang Jiancheng, Wang Kun.Design and opti- mization of a radial magnetic bearing for high-speed motor with flexible rotor[J]. IEEE Transactions on Magnetics, 2015, 51(6): 1-13.
[13] 张云鹏, 薛博文, 刘淑琴, 等. 基于气隙磁通边缘效应的轴向混合磁轴承承载力解析计算[J]. 电机与控制学报, 2014, 18(9): 54-59, 67.
Zhang Yunpeng, Xue Bowen, Liu Shuqin, et al.Calculation of electromagnetic force of axial hybrid magnetic bearing based on fringe effect of magnetic flux[J]. Electric Machines and Control, 2014, 18(9): 54-59, 67.
[14] 朱熀秋, 丁书玲. 计及边缘效应的交流混合磁轴承建模[J]. 中国电机工程学报, 2016, 36(23): 6528-6535, 6620.
Zhu Huangqiu, Ding Shuling.Modeling for AC hybrid magnetic bearings considering edge effect[J]. Proceedings of the CSEE, 2016, 36(23): 6528-6535, 6620.
[15] 禹春敏, 邓智泉, 梅磊, 等. 基于精确磁路的新型混合型轴向-径向磁悬浮轴承研究[J]. 电工技术学报, 2021, 36(6): 1219-1228.
Yu Chunmin, Deng Zhiquan, Mei Lei, et al.Research of new hybrid axial-radial magnetic bearing based on accurate magnetic circuit[J]. Transactions of China Electrotechnical Society, 2021, 36(6): 1219-1228.
[16] 叶品州, 李红伟, 于文涛, 等. 考虑材料非线性及涡流影响的径向电磁轴承等效磁路建模[J]. 电工技术学报, 2020, 35(9): 1858-1867.
Ye Pinzhou, Li Hongwei, Yu Wentao, et al.Equivalent magnetic circuit modeling of radial active magnetic bearing considering material nonlinearity and eddy current effects[J]. Transactions of China Electrotechnical Society, 2020, 35(9): 1858-1867.
[17] 丁国平, 胡业发, 周祖德. 径向磁力轴承磁极布置对磁场和磁力的影响[J]. 中国机械工程, 2008, 19(19): 2364-2367.
Ding Guoping, Hu Yefa, Zhou Zude.Efeects of magnetic pole arrangement on magnetic field and force in radial magnetic bearings[J]. China Mechani- cal Engineering, 2008, 19(19): 2364-2367.
[18] 陈世坤. 电机设计[M]. 北京: 机械工业出版社, 1982.
[19] 林其壬, 赵佑民. 磁路设计原理[M]. 北京: 机械工业出版社, 1987.
[20] 汪忠林. 主动磁悬浮轴承电磁场分析及涡流功耗研究[D]. 山东: 山东大学, 2009.
[21] 施佳余, 吴国庆, 茅靖峰, 等. 磁悬浮轴承系统控制方法研究[J]. 机械设计与制造, 2015(12): 265-268.
Shi Jiayu, Wu Guoqing, Mao Jingfeng, et al.Research of magnetic bearing system control method[J]. Machinery Design & Manufacture, 2015(12): 265-268.
[22] Sun Hongbo, Jiang Dong, Yang Jichang.Synchronous vibration suppression of magnetic bearing systems without angular sensors[J]. CES Transactions on Electrical Machines and Systems, 2021, 5(1): 70-77.
[23] 任正义, 杨立平, 聂发廷, 等. 大承载力径向电磁轴承的建模设计与分析[J]. 机床与液压, 2019, 47(13): 70-75.
Ren Zhengyi, Yang Liping, Nie Fating, et al.Modeling design and analysis of radial active magnetic bearings with large bearing capacity[J]. Machine Tool & Hydraulics, 2019, 47(13): 70-75.