[1] 黄海龙, 胡志良, 代万宝, 等. 海上风电发展现状及发展趋势[J]. 能源与节能, 2020(6): 51-53.
Huang Hailong, Hu Zhiliang, Dai Wanbao, et al.Development status and trend of offshore wind power[J]. Energy and Energy Conservation, 2020(6): 51-53.
[2] 高晨, 赵勇, 汪德良, 等. 海上风电机组电气设备状态检修技术研究现状与展望[J]. 电工技术学报, 2022, 37(增刊1): 30-42.
Gao Chen, Zhao Yong, Wang Deliang, et al.Research status and prospect of condition based maintenance technology for offshore wind turbine electrical equipment[J]. Transactions of China Electrotechnical Society, 2022, 37(S1): 30-42.
[3] 陈泽西, 孙玉树, 张妍, 等. 考虑风光互补的储能优化配置研究[J]. 电工技术学报, 2021, 36(增刊1): 145-153.
Chen Zexi, Sun Yushu, Zhang Yan, et al.Research on energy storage optimal allocation considering complementarity of wind power and PV[J]. Transactions of China Electrotechnical Society, 2021, 36(S1): 145-153.
[4] 许汉平, 杨炜晨, 张东寅, 等. 考虑换相失败相互影响的多馈入高压直流系统换相失败判断方法[J]. 电工技术学报, 2020, 35(8): 1776-1786.
Xu Hanping, Yang Weichen, Zhang Dongyin, et al.Commutation failure judgment method for multi-infeed HVDC systems considering the interaction of commutation failures[J]. Transactions of China Electrotechnical Society, 2020, 35(8): 1776-1786.
[5] 罗新, 黄学民, 刘春涛, 等. 换流站交流滤波器用避雷器频繁动作原因分析[J]. 电瓷避雷器, 2019(3): 159-164.
Luo Xin, Huang Xuemin, Liu Chuntao, et al.Analysis of reasons for the frequent action of arrester in AC filter in converter station[J]. Insulators and Surge Arresters, 2019(3): 159-164.
[6] 程宽, 赵洪峰, 周远翔. B2O3掺杂对直流ZnO压敏电阻老化特性的影响[J]. 电工技术学报, 2022, 37(13): 3413-3421.
Cheng Kuan, Zhao Hongfeng, Zhou Yuanxiang.Effect of B2O3 doping on the aging characteristics of DC ZnO varistor ceramics[J]. Transactions of China Electrotechnical Society, 2022, 37(13): 3413-3421.
[7] Gupta T K.Application of zinc oxide varistors[J]. Journal of the American Ceramic Society, 1990, 73(7): 1817-1840.
[8] 何金良. 金属氧化物压敏电阻: 从微观结构到宏观特性[M]. 北京: 清华大学出版社, 2019.
[9] 王振林, 李盛涛. 氧化锌压敏陶瓷制造及应用[M]. 北京: 科学出版社, 2009.
[10] Gupta T K. Microstructural engineering through donor and acceptor doping in the grain and grain boundary of a polycrystalline semiconducting ceramic[J]. Journal of Materials Research, 1992, 7(12): 3280-3295.
[11] Morris W, Cahn J.Adsorption and microphases at grain boundaries in non-ohmic zinc oxide ceramics containing bismuth oxide[M]. Grain Boundaries in Engineering Materials. Claitors Baton Rouge, LA. 1975: 223-233.
[12] Mukae K, Tsuda K, Nagasawa I.Non-ohmic properties of ZnO-rare earth metal oxide-Co3O4Ceramics[J]. Japanese Journal of Applied Physics, 1977, 16(8): 1361-1368.
[13] Tsai J K, Wu T B.Non-ohmic characteristics of ZnO-V2O5 ceramics[J]. Journal of Applied Physics, 1994, 76(8): 4817-4822.
[14] Sendi R K.Effects of different compositions from magnetic and nonmagnetic dopants on structural and electrical properties of ZnO nanoparticles-based varistor ceramics[J]. Solid State Sciences, 2018, 77: 54-61.
[15] Suzuki H, Bradt R C.Grain growth of ZnO in ZnO-Bi2O3 ceramics with TiO2 additions[J]. Journal of the American Ceramic Society, 1995, 78(5): 1354-1360.
[16] Daneu N, Rečnik A, Bernik S.Grain growth control in Sb2O3-doped zinc oxide[J]. Journal of the American Ceramic Society, 2003, 86(8): 1379-1384.
[17] He Jinliang, Long Wangcheng, Hu Jun, et al.Nickel oxide doping effects on electrical characteristics and microstructural phases of ZnO varistors with low residual voltage ratio[J]. Journal of the Ceramic Society of Japan, 2011, 119(1385): 43-47.
[18] Meng Pengfei, Hu Jun, He Jinliang.Low-residual-voltage ZnO varistor ceramics improved by multiple doping with gallium and indium[J]. Materials Letters, 2017, 195: 209-212.
[19] Slavko, Bernik,. Microstructural and electrical characteristics of Y2O3-doped ZnO-Bi2O3-based varistor ceramics[J]. Journal of the European Ceramic Society, 2001, 21(10/11): 1875-1878.
[20] M A, Ashraf,. Microstructure and electrical properties of Ho2O3 doped Bi2O3-based ZnO varistor ceramics[J]. Physica B: Condensed Matter, 2010, 405(17): 3770-3774.
[21] 翁俊梅, 姜胜林, 许毓春, 等. Bi2O3和Sb2O3的预复合对ZnO压敏电阻性能的影响[J]. 电子元件与材料, 2012, 31(10): 12-15.
Weng Junmei, Jiang Shenglin, Xu Yuchun, et al.Effects of pre-compounding of Bi2O3 and Sb2O3 on the properties of ZnO varistor[J]. Electronic Components and Materials, 2012, 31(10): 12-15.
[22] Yoshiko H I G A S H I, Eiichi K O G A. Barrier formation of single junctions with oxidation in SrCoO3-doped ZnO varistors sintered in a reducing atmosphere[J]. Journal of the Ceramic Society of Japan, 2019, 127(12): 912-917.
[23] 王瀛洲. 施主掺杂对氧化锌压敏陶瓷电性能的影响[D]. 广州: 华南理工大学, 2018.
[24] Cheng Xuanzhong, Lu Zhenya, Liu Xingyue, et al.Improvement of surge current performances of ZnO varistor ceramics via C3N4-doping[J]. Journal of the European Ceramic Society, 2020, 40(6): 2390-2395.
[25] K, Hembram,. Influence of CaO doping on phase, microstructure, electrical and dielectric properties of ZnO varistors[J]. Journal of Alloys and Compounds, 2020, 817: 152700.
[26] Bernik S, Bernard J, Daneu N, et al.Microstructure development in low-antimony oxide-doped zinc oxide ceramics[J]. Journal of the American Ceramic Society, 2007, 90(10): 3239-3247.
[27] 闫绳波. 基于固相合成工艺的高压ZnO压敏电阻器的配方研究[D]. 西安: 西安电子科技大学, 2013.
[28] 安群力. 提高ZnO压敏电阻片电位梯度和降低其残压比的工艺措施[C]//电工陶瓷第七次学术年会暨学术交流会论文集. 武夷山, 2001: 109-110.
[29] 陈青恒, 何金良, 谈克雄, 等. 提高氧化锌非线性电阻片通流容量的研究[J]. 电瓷避雷器, 2003(5): 26-28, 33.
Chen Qingheng, He Jinliang, Tan Kexiong, et al.The study of improving the energy absorption capability of ZnO varistor[J]. Insulators and Surge Arresters, 2003(5): 26-28, 33.
[30] 石成利, 刘国. 电子陶瓷材料的研究应用现状及其发展趋势[J]. 陶瓷, 2008(3): 11-16.
Shi Chengli, Liu Guo.Current status for research and application and development trends on electronic ceramics[J]. Ceramics, 2008(3): 11-16.
[31] 汪涛, 齐国权. 高压ZnO压敏电阻陶瓷材料研究进展[J]. 中国陶瓷, 2011, 47(12): 1-4, 7.
Wang Tao, Qi Guoquan.The developments of high voltage zno varistors[J]. China Ceramics, 2011, 47(12): 1-4, 7.
[32] Sheng-Yuan, Chu,. Analysis of ZnO varistors prepared by the Sol-gel method[J]. Ceramics International, 2000, 26(7): 733-737.
[33] 章会良, 曹全喜, 宋建军, 等. 高能氧化锌压敏元件研究[J]. 电子元件与材料, 2007, 26(10): 51-53.
Zhang Huiliang, Cao Quanxi, Song Jianjun, et al.Research on ZnO varistor with high capability[J]. Electronic Components and Materials, 2007, 26(10): 51-53.
[34] 梁烛, 倪凯凯, 代礼彬, 等. 纳米Bi2O3对ZnO压敏陶瓷性能的影响[J]. 广州化工, 2018, 46(8): 49-50, 85.
Liang Zhu, Ni Kaikai, Dai Libin, et al.Effect of nano-Bi2O3 on electrical properties of ZnO varistor ceramics[J]. Guangzhou Chemical Industry, 2018, 46(8): 49-50, 85.
[35] Liu Wenfeng, Zhang Lei, Kong Fanyi, et al.Enhanced voltage gradient and energy absorption capability in ZnO varistor ceramics by using nano-sized ZnO powders[J]. Journal of Alloys and Compounds, 2020, 828: 154252.
[36] 赵永红, 郭建平, 乔爱平, 等. 氧化锌压敏陶瓷纳米复合材料的制备及表征[J]. 电瓷避雷器, 2004(3): 29-31, 35.
Zhao Yonghong, Guo Jianping, Qiao Aiping, et al.The preparation & evaluation of nano compound powder for ZnO voltage-sensitive ceramic[J]. Insulators and Surge Arresters, 2004(3): 29-31, 35.
[37] 霍建华. 烧成气氛对氧化锌压敏电阻器电性能的影响[J]. 电瓷避雷器, 2000(1): 35-38.
Huo Jianhua.Impact of firing atmosphere on electrical properties of ZnO varistors[J]. Insulators and Surge Arresters, 2000(1): 35-38.
[38] 侯清健, 徐国跃, 赵毅, 等. 烧结温度和热处理对ZnO压敏陶瓷的影响[J]. 电瓷避雷器, 2004(5): 36-38, 42.
Hou Qingjian, Xu Guoyue, Zhao Yi, et al.Effect of sintering temperature and heat-treatment on ZnO varistor ceramics[J]. Insulators and Surge Arresters, 2004(5): 36-38, 42.
[39] Metz R, Delahu H, Vignalou J R, et al.Electrical propeties of varistors in relation to their ture bismuth composition after sintering[J]. Materials Chemistry and Physics, 2000, 63: 157-162.
[40] 康雪雅, 常爱民, 韩英, 等. ZnO压敏陶瓷的微波烧结[J]. 无机材料学报, 1998, 13(5): 751-754.
Kang Xueya, Chang Aimin, Han Ying, et al.Microwave sintering of ZnO varistor ceramics[J]. Journal of Inorganic Materials, 1998, 13(5): 751-754.
[41] Chen I W, Wang X H.Sintering dense nanocrystalline ceramics without final-stage grain growth[J]. Nature, 2000, 404(6774): 168-171.
[42] Cologna M, Rashkova B, Raj R.Flash sintering of nanograin zirconia in s at 850℃[J]. Journal of the American Ceramic Society, 2010, 93(11): 3556-3559.
[43] Wu Angxuan, Zhu Zhixiang, Wang Xilin, et al.High-performance ZnO varistor ceramics prepared by arc-induced flash sintering with low energy consumption at room temperature[J]. High Voltage, 2022, 7(2): 222-232.
[44] Guo Jing, Guo Hanzheng, Baker A L, et al.Cold sintering: a paradigm shift for processing and integration of ceramics[J]. Angewandte Chemie (International Ed in English), 2016, 55(38): 11457-11461.
[45] Yang, Jing,. Remarkably improved electrical conductivity of ZnO ceramics by cold sintering and post-heat-treatment[J]. Ceramics International, 2018, 44(16): 20570-20574.
[46] Li Jiang, Ning,. Influence of texture on electrical properties of ZnO ceramics prepared by extrusion and spark plasma sintering[J]. Ceramics International, 2007, 33(1): 107-114.
[47] Matsuoka M.Nonohmic properties of zinc oxide ceramics[J]. Japanese Journal of Applied Physics, 1971, 10(6): 736.
[48] 梁毓锦. 电力用氧化锌避雷器[J]. 电瓷避雷器, 1979(4): 36-47.
Liang Yujin.Zinc oxide arrester for electric power[J]. Insulators and Surge Arresters, 1979(4): 36-47.
[49] 汪仁根. 全国ZnO阀片摸底试验结果分析[J]. 中国电瓷, 1984(5): 1-9, 22.
Wang Rengen.Analysis on the results of national ZnO valve plate bottom-up test[J]. Insulators and Surge Arresters, 1984(5): 1-9, 22.
[50] 严幼良, 丁华忠, 苟雅江. 提高氧锌电阻片性能的研究[J]. 中国电瓷, 1985(3): 2-8, 14.
Yan Youliang, Ding Huazhong, Gou Yajiang.Study on improving the performance of zinc oxide resistor[J]. Insulators and Surge Arresters, 1985(3): 2-8, 14.
[51] 谭宜成, 刘子玉. ZnO阀片的制作新法及性能分析[J]. 电工技术学报, 1989, 4(1): 57-61.
Tan Yicheng, Liu Ziyu.Analysis of the propert ies of ZnO varistors prepared by a new method[J]. Transactions of China Electrotechnical Society, 1989, 4(1): 57-61.
[52] 郭亚平, 史利民, 王建文, 等. 高压ZnO压敏电阻器制造技术研究(续)[J]. 电瓷避雷器, 1993(3): 35-42.
Guo Yaping, Shi Limin, Wang Jianwen, et al.Research on manufacturing technology of high voltage ZnO varistor (continued)[J]. Insulators and Surge Arresters, 1993(3): 35-42.
[53] 陈洪存, 陈玲, 肖鸣山. SiO2对ZnO压敏电阻器性能的影响[J]. 电子元件与材料, 1994, 13(4): 36-39.
Chen Hongcun, Chen Ling, Xiao Mingshan.Effect of SiO2 on the performance of ZnO varistors[J]. Electronic Components $ Materials, 1994, 13(4): 36-39.
[54] Chen Tingji, He Xiaoming.提高ZnO电阻片性能的研究[J]. Insulators and Surge Arresters, 1994(1): 34-38.
[54] 陈廷吉, 何晓明. 提高ZnO电阻片性能的研究[J]. 电瓷避雷器, 1994(1): 34-38.
[55] 韩述斌, 吴德喜, 范坤泰, 等. 掺杂TiO_2对ZnO压敏电阻器的性能影响[J]. 传感器技术, 1996(3):20-22.
Han Shubin, Wu Dexi, Fan Kuntai, et al.The effect of doping TiO2 for ZnO varistors[J]. Journal of Transducer Technology, 1996(3):20-22.
[56] Ezhilvalavan S, Kutty T R.Effect of antimony oxide stoichiometry on the nonlinearity of zinc oxide varistor ceramics[J]. Materials Chemistry and Physics, 1997, 49(3): 258-269.
[57] Bernik S, Daneu N.Characteristics of SnO2-doped ZnO-based varistor ceramics[J]. Journal of the European Ceramic Society, 2001, 21(10/11): 1879-1882.
[58] 严群, 陈家钊, 涂铭旌. 添加Nd2O3对氧化锌压敏阀片电性能与显微组织的影响[J]. 硅酸盐学报, 2003, 31(12): 1179-1183.
Yan Qun, Chen Jiazhao, Tu Mingjing.Influence of adding nd2o3 on electrical properties and microstructureof zno varistor ceramics[J]. Journal of the Chinese Ceramic Society, 2003, 31(12): 1179-1183.
[59] 姚政, 翟维琴. 高电位梯度ZnO电阻片的研制[J]. 电瓷避雷器, 2003(3): 29-32.
Yao Zheng, Zhai Weiqin.Development of ZnO resistor with high potential gradient[J]. Insulators and Surge Arresters, 2003(3): 29-32.
[60] 李小鹏, 乐崐. ZnO非线性电阻片掺杂改性的研究[J]. 电瓷避雷器, 2004(4): 25-27, 31.
Li Xiaopeng, Le Kun.Study on zinc oxide nonlinear resistor doped with rare-earth oxides[J]. Insulators and Surge Arresters, 2004(4): 25-27, 31.
[61] 王玉平, 李盛涛. 新型ZnO压敏电阻片的研究进展[J]. 电气应用, 2005, 24(6): 1-2, 4.
Wang Yuping, Li Shengtao.Research progress of new ZnO varistor[J]. Electrotechnical Journal, 2005, 24(6): 1-2, 4.
[62] 翟维琴, 姚政, 金继华, 等. 提高ZnO变阻器电性能的研究[J]. 功能材料, 2006, 37(11): 1758-1761, 1764.
Zhai Weiqin, Yao Zheng, Jin Jihua, et al.Study on the improvement of the electric properties of ZnO varistors[J]. Journal of Functional Materials, 2006, 37(11): 1758-1761, 1764.
[63] 黄彩清, 肖汉宁, 洪秀成, 等. 钇掺杂对ZnO电阻片微观结构和电性能的影响[J]. 电瓷避雷器, 2007(4): 24-27.
Huang Caiqing, Xiao Hanning, Hong Xiucheng, et al.Microstructural and electrical characteristics of ZnO-Bi2O3-Sb2O3 based varistor ceramics doped with Y2O3[J]. Insulators and Surge Arresters, 2007(4): 24-27.
[64] 李盛涛, 成鹏飞, 王玉平, 等. 稀土氧化物对ZnO-Bi2O3系压敏陶瓷晶粒分布及电气性能的影响[J]. 电瓷避雷器, 2008(5): 19-22.
Li Shengtao, Cheng Pengfei, Wang Yuping, et al.Influence of rare-earth oxides on distribution of grain size and electrical properties of ZnO-Bi2O3 varistor ceramics[J]. Insulators and Surge Arresters, 2008(5): 19-22.
[65] 徐东, 程晓农, 赵国平, 等. 复合稀土La和Sc掺杂氧化锌压敏瓷的显微组织和电性能[J]. 中南大学学报(自然科学版), 2010, 41(6): 2167-2172.
Xu Dong, Cheng Xiaonong, Zhao Guoping, et al.Microstructure and electrical properties of lanthanum and scandium doped ZnO-Bi2O3-based varistor ceramics[J]. Journal of Central South University (Science and Technology), 2010, 41(6): 2167-2172.
[66] 徐东, 史小锋, 程晓农. 氧化钪掺杂氧化锌压敏瓷的显微组织和电性能[J]. 电瓷避雷器, 2010(3): 23-26.
Xu Dong, Shi Xiaofeng, Cheng Xiaonong.Microstructure and electrical properties of Sc2O3-doped ZnO varistor ceramics[J]. Insulators and Surge Arresters, 2010(3): 23-26.
[67] 王玉平, 成鹏飞. 直流ZnO电阻片的研究[J]. 电瓷避雷器, 2010(4): 34-37.
Wang Yuping, Cheng Pengfei.Study on D.C. ZnO varistors[J]. Insulators and Surge Arresters, 2010(4): 34-37.
[68] 黄国贤. 高电压梯度高通流能力氧化锌压敏电阻的研究[D]. 武汉: 华中科技大学, 2011.
[69] 姚银华, 曹全喜, 邹青文. 四价添加剂掺杂ZnO压敏电阻器的性能[J]. 压电与声光, 2012, 34(6): 868-871, 876.
Yao Yinhua, Cao Quanxi, Zou Qingwen.Performance of ZnO varistor with tetravalent additive[J]. Piezoelectrics & Acoustooptics, 2012, 34(6): 868-871, 876.
[70] Hairui, Bai,. Influence of Cr2O3 on highly nonlinear properties and low leakage current of ZnO-Bi2O3 varistor ceramics[J]. Ceramics International, 2016, 42(9): 10547-10550.
[71] Hongfeng, Zhao,. High nonlinearity and low residual-voltage ZnO varistor ceramics by synchronously doping Ga2O3 and Al2O3[J]. Materials Letters, 2016, 164: 80-83.
[72] 孟鹏飞, 胡军, 邬锦波, 等. 采用镓离子掺杂的高通流容量氧化锌压敏电阻[J]. 中国电机工程学报, 2017, 37(24): 7377-7383, 7452.
Meng Pengfei, Hu Jun, Wu Jinbo, et al.High impulse current discharge capability of ZnO varistors by doping gallium ions[J]. Proceedings of the CSEE, 2017, 37(24): 7377-7383, 7452.
[73] 孟鹏飞, 胡军, 邬锦波, 等. 氧化锌压敏电阻综合性能的多元掺杂综合调控[J]. 高电压技术, 2018, 44(1): 241-247.
Meng Pengfei, Hu Jun, Wu Jinbo, et al.Comprehensive performances of ZnO varistors tailored by multi-elements doping[J]. High Voltage Engineering, 2018, 44(1): 241-247.
[74] 万帅, 许衡, 席成圆, 等. Al、Ga离子对ZnO压敏电阻阀片电气性能的调控[J]. 高电压技术, 2020, 46(4): 1434-1440.
Wan Shuai, Xu Heng, Xi Chengyuan, et al.Adjustment of electrical properties of ZnO varistor ceramics by Co-doping with aluminum and gallium ions[J]. High Voltage Engineering, 2020, 46(4): 1434-1440.
[75] 万帅, 许衡, 曹伟, 等. La2O3的掺杂对氧化锌压敏陶瓷电性能的影响[J]. 压电与声光, 2020, 42(3): 353-356, 360.
Wan Shuai, Xu Heng, Cao Wei, et al.Effect of La2O3 doping on electrical properties of ZnO varistor ceramics[J]. Piezoelectrics & Acoustooptics, 2020, 42(3): 353-356, 360.
[76] 程宽, 赵洪峰, 周远翔. 多元施主掺杂对直流ZnO压敏陶瓷结构与电气性能的影响[J]. 材料工程, 2022, 50(8): 153-159.
Cheng Kuan, Zhao Hongfeng, Zhou Yuanxiang.Effect of multi-donor doping on structure and electrical properties of DC ZnO varistor ceramics[J]. Journal of Materials Engineering, 2022, 50(8): 153-159.
[77] Imai T, Udagawa T, Ando H, et al.Development of high gradient zinc oxide nonlinear resistors and their application to surge arresters[J]. IEEE Transactions on Power Delivery, 1998, 13(4): 1182-1187.
[78] Tsukamoto N, Ishii M.Repetitive impulse withstand performance of metal-oxide varistors[J]. IEEE Transactions on Power Delivery, 2017, 32(4): 1674-1681.
[79] 王玉平, 李盛涛, 孙西昌. ZnO压敏电阻片的应用研究进展[J]. 电气技术, 2006(10): 17-24.
Wang Yuping, Li Shengtao, Sun Xichang.Progress in development and application of ZnO varistors[J]. Electrical Engineering, 2006(10): 17-24.
[80] 何金良, 刘俊, 胡军, 等. 电力系统避雷器用ZnO压敏电阻研究进展[J]. 高电压技术, 2011, 37(3): 634-643.
He Jinliang, Liu Jun, Hu Jun, et al.Development of ZnO varistors in metal oxide arrestors utilized in ultra high voltage systems[J]. High Voltage Engineering, 2011, 37(3): 634-643.
[81] 李启厚, 吴希桃, 黄亚军, 等. 超细粉体材料表面包覆技术的研究现状[J]. 粉末冶金材料科学与工程, 2009, 14(1): 1-6.
Li Qihou, Wu Xitao, Huang Yajun, et al.Status quo of study on surface coating technologies of ultra-fine powders[J]. Materials Science and Engineering of Powder Metallurgy, 2009, 14(1): 1-6.
[82] 武七德, 王浩, 王萍. 表面包覆改性技术在陶瓷技术中的应用[J]. 现代技术陶瓷, 2000, 21(4): 18-21.
Wu Qide, Wang Hao, Wang Ping.Applicatin of modification technology on surface coating to ceramic process[J]. Advanced Ceramics, 2000, 21(4): 18-21.
[83] 洪广言, 崔洪涛. 室温固相法用于材料表面包覆的研究[C]// 中国化学会, 2003: 49-50.
Hong Guangyan, Cui Hongtao.Research on surface coating of materials by solid-phase method at room temperature[C]// Chinese Chemical Society, 2003: 49-50.
[84] 谢凤宽, 陈晓磊, 庄书娟, 等. 液相沉积法表面包覆改性纳米陶瓷微粒及机理研究进展[J]. 材料导报, 2006, 20(增刊1): 153-155, 158.
Xie Fengkuan, Chen Xiaolei, Zhuang Shujuan, et al.Research progress in surface coating modification of nanoceramic particles by liquid deposition and their mechanisms[J]. Materials Review, 2006, 20(S1): 153-155, 158.
[85] 章会良, 曹全喜. Sol-Gel法制备ZnO压敏电阻器[J]. 仪表技术与传感器, 2007(8): 10-11, 40.
Zhang Huiliang, Cao Quanxi.ZnO varistor fabricated by Sol-gel method[J]. Instrument Technique and Sensor, 2007(8): 10-11, 40.
[86] 张静. 锂硫电池材料的制备及其物理气相沉积法改性研究[D]. 合肥: 合肥工业大学, 2019.
[87] 桑可正, 韩璐, 史文鹏, 等. Al2O3陶瓷表面化学气相沉积Ti涂层的研究[C]// 第十一届全国工程陶瓷学术年会论文集, 2013: 129-129.
Sang Kezheng, Han Lu, Shi Wenpeng, et al.Research on Ti coating on Al2O3 ceramic surface by chemical vapor deposition[C]// Proceedings of the 11th National Conference on Engineering Ceramics, 2013: 129-129.
[88] Guan Y F, Pedraza A J.Synthesis and alignment of Zn and ZnO nanoparticles by laser-assisted chemical vapor deposition[J]. Nanotechnology, 2008, 19(4): 045609.
[89] Pillai S C, Kelly J M, McCormack D E, et al. The effect of processing conditions on varistors prepared from nanocrystalline ZnO[J]. Journal of Materials Chemistry, 2003, 13(10): 2586-2590.
[90] Yuan Fangli, Ryu H.Microstructure of varistors prepared with zinc oxide nanoparticles coated with Bi2O3[J]. Journal of the American Ceramic Society, 2004, 87(4): 736-738.
[91] Li Yuke, Li Guorong, Yin Qingrui.Preparation of ZnO varistors by solution nano-coating technique[J]. Materials Science and Engineering: B, 2006, 130(1/2/3): 264-268.
[92] 王琴, 秦勇, 段雷, 等. 溶液包裹法制备低压氧化锌压敏陶瓷[J]. 稀有金属材料与工程, 2007, 36(增刊2): 181-183.
Wang Qin, Qin Yong, Duan Lei, et al.Low voltage ZnO varistor fabricated by solution-coating method[J]. Rare Metal Materials and Engineering, 2007, 36(S2): 181-183.
[93] Ali Shojaee S, Shahraki M M, Ali Faghihi Sani M, et al. Microstructural and electrical properties of varistors prepared from coated ZnO nanopowders[J]. Journal of Materials Science: Materials in Electronics, 2010, 21(6): 571-577.
[94] Meng Lei, Zheng Liaoying, Cheng Lihong, et al.Synthesis of novel core-shell nanocomposites for fabricating high breakdown voltage ZnO varistors[J]. Journal of Materials Chemistry, 2011, 21(30): 11418-11423.
[95] Wang Maohua, Zhou Fu, Zhang Bo.Synthesis of ZnO@Co2O3-Bi2O3-MnO core-shell structured nanoparticles for varistors applications[J]. Powder Technology, 2014, 264: 514-518.
[96] Liu Tingting, Wang Maohua, Zhang Hanping.Synthesis and characterization of ZnO/Bi2O3 core/shell nanoparticles by the Sol-gel method[J]. Journal of Electronic Materials, 2016, 45(8): 4412-4417.
[97] Qu Xiao, Yao Dachuan, Liu Jinran, et al.Synthesis of SiO2-coated core-shell ZnO composites[J]. Journal of Electronic Materials, 2018, 47(1): 409-414.
[98] 张海峰. ZnO掺杂及表面吸附的第一性原理研究[D]. 北京: 北京理工大学, 2015.
[99] 王立惠. ZnO表界面及其相关特性的第一性原理研究[D]. 昆明: 昆明理工大学, 2009. |