Abstract:In order to reduce the input inductor current stress of the basic quadratic Buck-Boost converter, a quadratic Buck-Boost converter based on switched inductance is proposed. The energy transmission process of the converter under L1-CCM/L2-CCM/ L3-CCM is analyzed in detail. It is pointed out that whether the inductance L1 and L2 are equal in this mode only affects the working mode of the converter; the relational expressions of the converter voltage gain, the input inductor current stress expression are derived. The CCM and DCM critical conditions and critical inductance values of the inductors L1, L2, and L3 are given. Compared with the basic quadratic Buck-Boost converter, the converter voltage gain is increased by two times, and the input inductance current stress is reduced by one time. The feasibility of the proposed circuit and the correctness of the theoretical analysis are verified by simulation and experiment.
刘树林, 王斌, 朱高中, 王航杰. 基于开关电感的二次型Buck-Boost变换器[J]. 电工技术学报, 2022, 37(zk1): 190-197.
Liu Shulin, Wang Bin, Zhu Gaozhong, Wang Hangjie. Quadratic Buck-Boost Converter Based on Switched Inductance. Transactions of China Electrotechnical Society, 2022, 37(zk1): 190-197.
[1] 艾欣, 韩晓男, 孙英云. 光伏发电并网及其相关技术发展现状与展望[J]. 现代电力, 2013, 30(1): 1-7. Ai Xin, Han Xiaonan, Sun Yingyun.The development status and prospect of grid-connected photovoltaic generation and its related technologies[J]. Modern Electric Power, 2013, 30(1): 1-7. [2] Zainuri M A A M, Radzi M A M, Soh A C, et al. Development of adaptive perturb and observe-fuzzy control maximum power point tracking for photovoltaic Boost DC-DC converter[J]. Renewable Power Generation, 2014, 8(2): 183-194. [3] 吴迎新, 田李剑. 太阳能光伏发电现状研究及问题分析[J]. 技术与市场, 2019, 26(1): 115-116. Wu Yingxin, Tian Lijian.Research and problem analysis of solar photovoltaic power eneration[J]. Technology and Market, 2019, 26(1): 115-116. [4] Hsieh Y C, Alam M M, Lin Zhongrong, et al.A high voltage-gain Boost converter with coupled-inductor[J]. Journal of the Chinese Institute of Engineers, 2018, 41(1): 1-7. [5] 王立乔, 李占一, 刘乐, 等. 一种无电解电容单级Buck-Boost逆变器[J]. 电工技术学报, 2019, 34(20): 4295-4305. Wang Liqiao, Li Zhanyi, Liu Le, et al.A single-stage Buck-Boost inverter with non-electrolytic capacitor[J]. Transactions of China Electrotechnical Society, 2019, 34(20): 4295-4305. [6] 齐磊, 杨亚永, 孙孝峰, 等. 一种电流型高增益双向DC-DC变换器[J]. 电工技术学报, 2019, 34(18): 3797-3809. Qi Lei, Yang Yayong, Sun Xiaofeng, et al.A current-fed high step-up bidirectional DC-DC converter[J]. Transactions of China Electrotechnical Society, 2019, 34(18): 3797-3809. [7] 刘树林, 刘健, 钟久明. 输出本质安全型Buck-Boost DC-DC变换器的分析与设计[J]. 中国电机工程学报, 2008, 28(3): 60-65. Liu Shulin, Liu Jian, Zhong Jiuming.Analysis and design of output intrinsically safe Buck-Boost DC-DC converters[J]. Proceedings of the CSEE, 2008, 28(3): 60-65. [8] 吴琨, 钱挺. 一种带三绕组耦合电感的级联型高增益功率变换器[J]. 电工技术学报, 2017, 32(20): 124-132. Wu Kun, Qian Ting.A cascaded high step-up DC-DC converter with three-winding coupled inductor[J]. Transactions of China Electrotechnical Society, 2017, 32(20): 124-132. [9] 王萍, 陈博, 王议锋, 等. 一种多谐振隔离双向DC-DC变换器[J]. 电工技术学报, 2019, 34(8): 1667-1676. Wang Ping, Chen Bo, Wang Yifeng, et al.A multi resonant bidirectional DC-DC converter[J]. Transactions of China Electrotechnical Society, 2019, 34(8): 1667-1676. [10] 刘树林, 刘健, 钟久明. Buck-Boost变换器的能量传输模式及输出纹波电压分析[J]. 电子学报, 2007, 35(5): 838-843. Liu Shulin, Liu Jian, Zhong Jiuming.Energy transmission modes and output ripple voltage of Buck-Boost converters[J]. Acta Electronica Sinica, 2007, 35(5): 838-843. [11] 荣德生, 孙瑄瑨, 刘飞杨, 等. 一种新型磁集成二次型开关电感单元[J]. 电机与控制学报, 2020, 24(4): 131-140. Rong Desheng, Sun Xuanjin, Liu Feiyang, et al.Integrated magnetic quadratic switched-inductor unit[J]. Electric Machines and Control, 2020, 24(4): 131-140. [12] 李洪珠, 曹人众, 张垒, 等. 磁集成开关电感交错并联Buck/Boost变换器[J]. 电机与控制学报, 2018, 22(6): 87-95. Li Hongzhu, Cao Renzhong, Zhang Lei, et al.Integrated magnetic and switch inductance staggered parallel of Buck/Boost converter[J]. Electric Machines and Control, 2018, 22(6): 87-95. [13] Maksimovic D, Cuk S.Switching converters with wide DC conversion range[J]. IEEE Transactions on Power Electronics, 1991, 6(1): 151-157. [14] Mostaan A, Gorji S A, Soltani M, et al.A novel quadratic Buck-Boost DC-DC converter without floating gate-driver[C]//2016 IEEE 2nd Annual Southern Power Electronics Conference (SPEC), New Zealand, 2016: 1-5. [15] Mostaan A, Gorji S A, Soltani M N, et al.A novel single switch transformerless quadratic DC/DC Buck-Boost converter[C]//2017 19th European Conference on Power Electronics and Applications (EPE'17 ECCE Europe), Poland, 2017: 1-6. [16] Veerachary M, Khuntia M R.Design and analysis of enhanced gain Buck-Boost converter[C]//2019 International Conference on Computing, Power and Communication Technologies (GUCON), New Delhi, 2019: 780-785. [17] Gholizadeh H, Sarikhani A, Hamzeh M.A transformerless quadratic Buck-Boost converter suitable for renewable applications[C]//2019 10th International Power Electronics, Drive Systems and Technologies Conference (PEDSTC), Shiraz, 2019: 470-474. [18] Rosas-Caro J C, Sanchez V M, Valdez-Resendiz J E, et al. Quadratic Buck-Boost converter with positive output-voltage and continuous input-current[J]. 2018: 152-158. [19] Rosas-Caro J C, Valdez-Resendiz J E, Mayo-Maldonado J C, et al. Quadratic Buck-Boost converter with positive output voltage and minimum ripple point design[J]. IET Power Electronics, 2018, 11(7): 1306-1313. [20] Alonso J M, Viña J, Gacio D, et al.Analysis and design of the quadratic Buck-Boost converter as a high-power-factor driver for power-LED lamps[C]//IECON 2010-36th Annual Conference on IEEE Industrial Electronics Society, Glendale, 2010: 2541-2546. [21] Sarikhani A, Allahverdinejad B, Hamzeh M, et al.A continuous input and output current quadratic Buck-Boost converter with positive output voltage for photovoltaic applications[J]. Solar Energy, 2019, 188: 19-27. [22] 修瑞仙, 张士宇. 二次型Buck-Boost 变换器在光伏系统的应用分析[J]. 山西建筑, 2015, 41(35): 223-226. Xiu Ruixian, Zhang Shiyu.Analysis the application of quadratic Buck-Boost converter in photovoltaic energy-conversion system[J]. Shanxi Architrcture, 2015, 41(35): 223-226.