Abstract:With the development of near-field magnetic coupling link, wireless power transmission (WPT) has gained great popularity owing to its characteristics of reliability, convenience and safety. WPT reveals unique technical advantages in special applications that are inconvenient to be supplied by wired power transmission. In essence, the electromagnetic field can be served as the energy carrier as well as the information medium, which means the near-field magnetic coupling WPT can simultaneously transmit power and information (SWPIT) without additional radio frequency links. SWPIT systems apply various digital modulation schemes to improve the telemetry rate and stability, which can reduce the crosstalk between information and power flow. This review has elucidated the development of the digital modulation for near-field magnetic coupling SWPIT systems, including data modulation and circuit implementation, and finally summarized the advantages and disadvantages of different modulation schemes for corresponding applications.
李建国, 张波, 荣超. 近场磁耦合无线电能与信息同步传输技术的发展(上篇):数字调制[J]. 电工技术学报, 2022, 37(14): 3487-3501.
Li Jian’guo, Zhang Bo, Rong Chao. An Overview of Simultaneous Wireless Power and Information Transfer Via Near-Field Magnetic Links (Part Ⅰ): Digital Modulation. Transactions of China Electrotechnical Society, 2022, 37(14): 3487-3501.
[1] He Xiangning, Wang Ruichi, Wu Jiande, et al.Nature of power electronics and integration of power con-version with communication for talkative power[J]. Nature Communications, 2020, 11(1): 2479. [2] Perera T D P, Jayakody D N K, Sharma S K, et al. Simultaneous wireless information and power transfer (SWIPT): recent advances and future challenges[J]. IEEE Communications Surveys & Tutorials, 2018, 20(1): 264-302. [3] 薛明, 杨庆新, 章鹏程, 等. 无线电能传输技术应用研究现状与关键问题[J]. 电工技术学报, 2021, 36(8): 1547-1568. Xue Ming, Yang Qingxin, Zhang Pengcheng, et al.Application status and key issues of wireless power transmission technology[J]. Transactions of China Electrotechnical Society, 2021, 36(8): 1547-1568. [4] 贾金亮, 闫晓强. 磁耦合谐振式无线电能传输特性研究动态[J]. 电工技术学报, 2020, 35(20): 4217-4231. Jia Jinliang, Yan Xiaoqiang.Research tends of magnetic coupling resonant wireless power transfer characteristics[J]. Transactions of China Electro-technical Society, 2020, 35(20): 4217-4231. [5] AirFuel Alliance IEC-63028-2017 Wireless power transfer-AirFuel Alliance resonant baseline system specification (BSS)[S]. 2017. [6] 张献, 任年振, 杨庆新, 等. 电动汽车无线充电自整定控制[J]. 电工技术学报, 2020, 35(23): 4825-4834. Zhang Xian, Ren Nianzhen, Yang Qingxin, et al.Research on self-tuning control strategy of wireless charging for electric vehicles[J]. Transactions of China Electrotechnical Society, 2020, 35(23): 4825-4834. [7] Kim H J, Hirayama H, Kim S, et al.Review of near-field wireless power and communication for bio-medical applications[J]. IEEE Access, 2017, 5: 21264-21285. [8] 沈栋, 杜贵平, 丘东元, 等. 无线电能传输系统电磁兼容研究现况及发展趋势[J]. 电工技术学报, 2020, 35(13): 2855-2869. Shen Dong, Du Guiping, Qiu Dongyuan, et al.Research status and development trend of electro-magnetic compatibility of wireless power trans-mission system[J]. Transactions of China Electro-technical Society, 2020, 35(13): 2855-2869. [9] 夏晨阳, 李玉华, 雷轲, 等. 变负载ICPT系统电能与信号反向同步传输方法[J]. 中国电机工程学报, 2017, 37(6): 1857-1866. Xia Chenyang, Li Yuhua, Lei Ke, et al.Study on power forward and signal reverse transmission in load changing ICPT system[J]. Proceedings of the CSEE, 2017, 37(6): 1857-1866. [10] Marincic A S. Nikola tesla and the wireless trans-mission of energy[J]. IEEE Transactions on Power Apparatus and Systems, 1982, PAS-101(10): 4064-4068. [11] Galbraith D C, Soma M, White R L. A wide-band efficient inductive transdennal power and data link with coupling insensitive gain[J]. IEEE Transactions on Biomedical Engineering, 1987, BME-34(4): 265-275. [12] Zierhofer C M, Hochmair E S.High-efficiency coupling-insensitive transcutaneous power and data trans-mission via an inductive link[J]. IEEE Transactions on Bio-Medical Engineering, 1990, 37(7): 716-722. [13] Gudnason G, Bruun E, Haugland M.A chip for an implantable neural stimulator[J]. Analog Integrated Circuits and Signal Processing, 2000, 22(1): 81-89. [14] Tang Zhengnian, Smith B, Schild J H, et al.Data transmission from an implantable biotelemeter by load-shift keying using circuit configuration modu-lator[J]. IEEE Transactions on Biomedical Engineering, 1995, 42(5): 524-528. [15] Kawamura A, Ishioka K, Hirai J.Wireless trans-mission of power and information through one high-frequency resonant AC link inverter for robot mani-pulator applications[J]. IEEE Transactions on Industry Applications, 1996, 32(3): 503-508. [16] Trigui A, Ali M, Hached S, et al.Generic wireless power transfer and data communication system based on a novel modulation technique[J]. IEEE Transa-ctions on Circuits and Systems I: Regular Papers, 2020, 67(11): 3978-3990. [17] Trautmann M, Sanftl B, Weigel R, et al.Simultaneous inductive power and data transmission system for smart applications[J]. IEEE Circuits and Systems Magazine, 2019, 19(3): 23-33. [18] Hiraga Y, Hirai J, Kaku Y, et al.Decentralized control of machines with the use of inductive trans-mission of power and signal[C]//Proceedings of 1994 IEEE Industry Applications Society Annual Meeting, Denver, USA, 1994: 875-881. [19] Ghovanloo M, Atluri S.A wide-band power-efficient inductive wireless link for implantable micro-electronic devices using multiple carriers[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2007, 54(10): 2211-2221. [20] Inanlou F, Kiani M, Ghovanloo M.A 10.2Mbps pulse harmonic modulation based transceiver for implanta-ble medical devices[J]. IEEE Journal of Solid-State Circuits, 2011, 46(6): 1296-1306. [21] Kiani M, Ghovanloo M.A 13.56-Mbps pulse delay modulation based transceiver for simultaneous near-field data and power transmission[J]. IEEE Transa-ctions on Biomedical Circuits and Systems, 2015, 9(1): 1-11. [22] 周晓东, 张河. 用于引信的能量和信息非接触同步传输技术[J]. 兵工学报, 2003, 24(3): 424-426. Zhou Xiaodong, Zhang He.Contactless synchronous transmission of power and information for fuzes[J]. Acta Armamentarii, 2003, 24(3): 424-426. [23] Liu Xu, Xia Chenyang, Han Xiaozuo, et al.Simu-ltaneous wireless power and information transmission based on harmonic characteristic of soft-switching inverter[J]. IEEE Transactions on Industrial Elec-tronics, 2022, 69(6): 6090-6100. [24] Xia Chenyang, Jia Renhai, Shi Yuntong, et al.Simu-ltaneous wireless power and information transfer based on phase-shift modulation in ICPT system[J]. IEEE Transactions on Energy Conversion, 2021, 36(2): 629-639. [25] Guo Pilong, Yuan Rongxiang, Cai Changsong, et al.High-data-frequency-ratio information transmission method for fast dynamic response SWPIT systems based on DASK modulation[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2021, 9(3): 3822-3834. [26] Guo Pilong, Yuan Rongxiang, Chen Yahong, et al.High-bandwidth-utilization wireless power and infor-mation transmission based on DDPSK modulation[J]. IEEE Access, 2019, 7: 85560-85572. [27] Zhou Yan, Lin Wu, Wang Baoyun.High-efficiency coupling-insensitive wireless power and information transmission based on the phase-shifted control[J]. IEEE Transactions on Power Electronics, 2018, 33(9): 7821-7831. [28] Zhou Yan, Zhu Xiang, Lin Wu, et al.Study of wireless power and information transmission tech-nology based on the triangular current waveform[J]. IEEE Transactions on Power Electronics, 2018, 33(2): 1368-1377. [29] Zhou Yan, Ma Chongyuan, Zhang Zijian, et al.Redefining the channel bandwidth for simultaneous wireless power and information transfer[J]. IEEE Transactions on Industrial Electronics, 2022, 69(7): 6881-6891. [30] Wu Jiande, Zhao Chongwen, Lin Zhengyu, et al.Wireless power and data transfer via a common inductive link using frequency division multi-plexing[J]. IEEE Transactions on Industrial Electro-nics, 2015, 62(12): 7810-7820. [31] Qian Zhongnan, Yan Rui, Wu Jiande, et al.Full-duplex high-speed simultaneous communication tech-nology for wireless EV charging[J]. IEEE Transa-ctions on Power Electronics, 2019, 34(10): 9369-9373. [32] 孙跃, 闫鹏旭, 王智慧, 等. ICPT系统电能信号共享通道实时同步传输方法研究[J]. 中国电机工程学报, 2016, 36(19): 5172-5178, 5398. Sun Yue, Yan Pengxu, Wang Zhihui, et al.Research on real-time and synchronization transmission of power and data via a shared channel in inductive coupling power transfer systems[J]. Proceedings of the CSEE, 2016, 36(19): 5172-5178, 5398. [33] Sun Yue, Yan Pengxu, Wang Zhihui, et al.The parallel transmission of power and data with the shared channel for an inductive power transfer system[J]. IEEE Transactions on Power Electronics, 2016, 31(8): 5495-5502. [34] Fan Yuanshuang, Sun Yue, Dai Xin, et al.Simu-ltaneous wireless power transfer and full-duplex communication with a single coupling interface[J]. IEEE Transactions on Power Electronics, 2021, 36(6): 6313-6322. [35] Wang Peiyue, Sun Yue, Feng Yuchen, et al.An improvement of SNR for simultaneous wireless power and data transfer system with full-duplex com-munication mode[J]. IEEE Transactions on Power Electronics, 2022, 37(2): 2413-2424. [36] 唐春森, 邓棚亓, 李亚超, 等. 基于部分能量线圈和OFDM技术的ICPT系统高速数据传输方法[J]. 电源学报, 2019, 17(4): 80-86. Tang Chunsen, Deng Pengqi, Li Yachao, et al.High-speed data transmission method for ICPT system based on partial energy coil and OFDM technology[J]. Journal of Power Supply, 2019, 17(4): 80-86. [37] 陈国东. 水下电缆巡检机器人无线充电关键技术研究[D]. 重庆: 重庆大学, 2019. [38] 张宁. 基于耦合线圈复用的ICPT系统能量信号分时传输技术[D]. 重庆: 重庆大学, 2015. [39] 郭尧, 魏国, 郝潇潇, 等. 双谐振耦合能量信息同步传输技术研究[J]. 电工技术学报, 2015, 30(19): 18-25. Guo Yao, Wei Guo, Hao Xiaoxiao, et al.Study on wireless power and information synchronous transfer based on dual resonant coupling circuits[J]. Transa-ctions of China Electrotechnical Society, 2015, 30(19): 18-25. [40] Yao Yousu, Wang Yijie, Liu Xiaosheng, et al.Analysis, design, and implementation of a wireless power and data transmission system using capacitive coupling and double-sided LCC compensation topology[J]. IEEE Transactions on Industry Applications, 2019, 55(1): 541-551. [41] Yao Yousu, Tang Chengxiong, Gao Shenghan, et al.Analysis and design of a simultaneous wireless power and data transfer system featuring high data rate and signal-to-noise ratio[J]. IEEE Transactions on Indu-strial Electronics, 2021, 68(11): 10761-10771. [42] Yao Yousu, Cheng Haisong, Wang Yijie, et al.An FDM-based simultaneous wireless power and data transfer system functioning with high-rate full-duplex communication[J]. IEEE Transactions on Industrial Informatics, 2020, 16(10): 6370-6381. [43] 吉莉, 王丽芳, 廖承林, 等. 基于单线圈双谐振结构的无线携能通信系统架构研究与设计[J]. 电工技术学报, 2018, 33(4): 791-799. Ji Li, Wang Lifang, Liao Chenglin, et al.Simu-ltaneous wireless power/information transmission based on the single coil and dual-band resonant structure[J]. Transactions of China Electrotechnical Society, 2018, 33(4): 791-799. [44] Ji Li, Wang Lifang, Liao Chenglin, et al.Simu-ltaneous wireless power and bidirectional information transmission with a single-coil, dual-resonant stru-cture[J]. IEEE Transactions on Industrial Electronics, 2019, 66(5): 4013-4022. [45] Proakis J, Salehi M.Digital communications (fifth edition)[M]. New York: McGraw-Hill Higher Education, 2007. [46] Liu Wentai, Vichienchom K, Clements M, et al.A neuro-stimulus chip with telemetry unit for retinal prosthetic device[J]. IEEE Journal of Solid-State Circuits, 2000, 35(10): 1487-1497. [47] Kilinc E G, Dehollain C, Maloberti F.A low-power PPM demodulator for remotely powered batteryless implantable devices[C]//2014 IEEE 57th international midwest symposium on circuits and systems (MWSCAS), College Station, USA, 2014: 318-321. [48] Trigui A, Ali M, Ammari A C, et al.Quad-level carrier width modulation demodulator for micro-implants[C]//2016 14th IEEE International New Circuits and Systems Conference (NEWCAS), Vancouver, Canada, 2016: 1-4. [49] Simard G, Sawan M, Massicotte D.High-speed OQPSK and efficient power transfer through indu-ctive link for biomedical implants[J]. IEEE Transa-ctions on Biomedical Circuits and Systems, 2010, 4(3): 192-200. [50] 张爱国. 感应式电能和信号同步传输技术的研究[D]. 哈尔滨: 哈尔滨工业大学, 2013. [51] 刘晓胜, 顾轩溥, 姚友素, 等. 基于电容调制的无线电能传输系统信号电能同步传输[J]. 电力自动化设备, 2018, 38(3): 140-146, 154. Liu Xiaosheng, Gu Xuanpu, Yao Yousu, et al.Synchronous transmission of signal and power in WPT system based on capacitor modulation[J]. Electric Power Automation Equipment, 2018, 38(3): 140-146, 154. [52] 李雯文, 马凯雄, 马殿光, 等. 感应式无线电能传输系统电能与信息同时传输[J]. 电力电子技术, 2015, 49(10): 20-22, 27. Li Wenwen, Ma Kaixiong, Ma Dianguang, et al.Simultaneous transmission of power and information in an inductively coupled wireless power transfer system[J]. Power Electronics, 2015, 49(10): 20-22,27. [53] Ahn D, Kim S, Moon J, et al.Wireless power transfer with automatic feedback control of load resistance transformation[J]. IEEE Transactions on Power Elec-tronics, 2016, 31(11): 7876-7886. [54] Troyk P R, DeMichele G A. Inductively-coupled power and data link for neural prostheses using a class-E oscillator and FSK modulation[C]//Proceedings of the 25th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (IEEE Cat. No. 03CH37439), Cancun, Mexico, 2003, 4: 3376-3379. [55] Huang C C, Lin Chunliang.Wireless power and bidirectional data transfer scheme for battery charger[J]. IEEE Transactions on Power Electronics, 2018, 33(6): 4679-4689. [56] Kim J G, Wei Guo, Kim M H, et al.A wireless power and information simultaneous transfer technology based on 2FSK modulation using the dual bands of series-parallel combined resonant circuit[J]. IEEE Transactions on Power Electronics, 2019, 34(3): 2956-2965. [57] 武洁, 何帅彪, 窦智峰, 等. 一种副边调频式反向信息无线电能传输系统设计[J]. 电源学报, 2021, 19(2): 160-166. Wu Jie, He Shuaibiao, Dou Zhifeng, et al.Reverse information transfer design in WPT system with frequency modulation on secondary side[J]. Journal of Power Supply, 2021, 19(2): 160-166. [58] 伏思庆. 基于频率和相位调制的ICPT系统信号双向传输[D]. 重庆: 重庆大学, 2014. [59] Kennedy H, Bodnar R, Lee T, et al.A high-Q resonant inductive link transmit driver with adaptive-predictive phase-continuous tuning and deviation frequency calibration for enhanced FSK/PSK modu-lation and power transfer[J]. IEEE Journal of Solid-State Circuits, 2020, 55(9): 2401-2413. [60] Li Hongchang, Chen Shuxin, Fang Jingyang, et al.Frequency-modulated phase shift keying communi-cation for MEPT control of wireless power transfer[J]. IEEE Transactions on Power Electronics, 2021, 36(5): 4954-4959. [61] Jiang Dai, Cirmirakis D, Schormans M, et al.An integrated passive phase-shift keying modulator for biomedical implants with power telemetry over a single inductive link[J]. IEEE Transactions on Bio-medical Circuits and Systems, 2017, 11(1): 64-77. [62] 朱旺. 恒流恒压无线充电系统研究[D]. 徐州: 中国矿业大学, 2018. [63] Kao Jiajing, Lin Chunliang, Liu Yuchen, et al.Adaptive bidirectional inductive power and data transmission system[J]. IEEE Transactions on Power Electronics, 2021, 36(7): 7550-7563. [64] WPC IEC-PAS63095-1-2017 The Qi wireless power transfer system powerclass 0 specification-parts 1 and 2: Interface definitions[S]. 2017. [65] Coskun V, Ozdenizci B, Ok K.A survey on near field communication (NFC) technology[J]. Wireless Personal Communications, 2013, 71(3): 2259-2294. [66] Trigui A, Hached S, Ammari A C, et al.Maximizing data transmission rate for implantable devices over a single inductive link: methodological review[J]. IEEE Reviews in Biomedical Engineering, 2019, 12: 72-87. [67] Li Yanling, Li Xiaofei, Dai Xin.A simultaneous wireless power and data transmission method for multi-output WPT systems: analysis, design, and experimental verification[J]. IEEE Access, 2020, 8: 206353-206359.