Abstract:As an important part of the new infrastructure construction, the construction of 5G base stations is accelerating the construction process. With the rapid increase in the number of 5G base stations, the base station backup energy storage will be a considerable energy storage resource. As the 5G base station is still in the early stage of construction, its strategy for participating in the coordinated interaction of the power grid as the main body of the energy storage configuration still needs to be studied urgently. This paper designs a 5G base station cloud energy storage system for the purpose of revitalizing the idle energy storage resources of communication base stations and proposes a method for analyzing the schedulable potential of base station energy storage that takes into account the communication load status of the base station. And then established a 5G base station energy storage participating in the coordinated dispatching model of the power grid. The analysis results of the calculation example show that the 5G base station energy storage regulation strategy proposed in this paper can reduce the impact of the backup energy storage charge and discharge on the backup power, and utilize the time difference and spatial complementarity of the base station communication load status to effectively achieve the auxiliary grid peak reduction and reduce the operating cost of base stations, so that the power grid and communication operators mutually benefit and win-win.
麻秀范, 孟祥玉, 朱秋萍, 段颖, 王志. 计及通信负载的5G基站储能调控策略[J]. 电工技术学报, 2022, 37(11): 2878-2887.
Ma Xiufan, Meng Xiangyu, Zhu Qiuping, Duan Ying, Wang Zhi. Control Strategy of 5G Base Station Energy Storage Considering Communication Load. Transactions of China Electrotechnical Society, 2022, 37(11): 2878-2887.
[1] 余莉, 张治中, 程方, 等. 第五代移动通信网络体系架构及其关键技术[J]. 重庆邮电大学学报(自然科学版), 2014, 26(4): 427-433, 560. Yu Li, Zhang Zhizhong, Cheng Fang, et al.Cellular architecture and key technologies for 5G mobile communication networks[J]. Journal of Chongqing University of Posts and Telecommunications(Natural Science Edition), 2014, 26(4): 427-433, 560. [2] 马忠贵, 宋佳倩. 5G超密集网络的能量效率研究综述[J]. 工程科学学报, 2019, 41(8): 968-980. Ma Zhonggui, Song Jiaqian.Survey of energy efficiency for 5G ultra-dense networks[J]. Chinese Journal of Engineering, 2019, 41(8): 968-980. [3] Guo Xueying, Niu Zhisheng, Zhou Sheng, et al.Delay-constrained energy-optimal base station sleeping control[J]. IEEE Journal on Selected Areas in Communications, 2016, 34(5): 1073-1085. [4] Yang Juwo, Wang Wenbo, Zhang Xing.Hysteretic base station sleeping control for energy saving in 5G cellular network[C]//IEEE Vehicular Technology Conference, Sydney NSW, Australia, 2017: 1-5. [5] 寇凌峰, 张颖, 季宇, 等. 分布式储能的典型应用场景及运营模式分析[J]. 电力系统保护与控制, 2020, 48(4): 177-187. Kou Lingfeng, Zhang Ying, Ji Yu, et al.Typical application scenario and operation mode analysis of distributed energy storage[J]. Power System Protection and Control, 2020, 48(4): 177-187. [6] 刁涵彬, 李培强, 吕小秀, 等. 考虑多元储能差异性的区域综合能源系统储能协同优化配置[J]. 电工技术学报, 2021, 36(1): 151-165. Diao Hanbin, Li Peiqiang, Lü Xiaoxiu, et al.Coordinated optimal allocation of energy storage in regional integrated energy system considering the diversity of multi-energy storage[J]. Transactions of China Electrotechnical Society, 2021, 36(1): 151-165. [7] 应飞祥, 徐天奇, 李琰, 等. 含电动汽车充电站商业型虚拟电厂的日前调度优化策略研究[J]. 电力系统保护与控制, 2020, 48(21): 92-100. Ying Feixiang, Xu Tianqi, Li Yan, et al.Research on day-to-day scheduling optimization strategy of a commercial virtual power plant with an electric vehicle charging station[J]. Power System Protection and Control, 2020, 48(21): 92-100. [8] 麻秀范, 陈静, 余思雨, 等. 计及容量市场的用户侧储能优化配置研究[J]. 电工技术学报, 2020, 35(19): 4028-4037. Ma Xiufan, Chen Jing, Yu Siyu, et al.Research on user side energy storage optimization configuration considering capacity market[J]. Transactions of China Electrotechnical Society, 2020, 35(19): 4028-4037. [9] 刁涵彬, 李培强, 王继飞, 等. 考虑电/热储能互补协调的综合能源系统优化调度[J]. 电工技术学报, 2020,35(21): 4532-4543. Diao Hanbin, Li Peiqiang, Wang Jifei, et al.Optimal dispatch of integrated energy system considering complementary coordination of electric/thermal energy storage[J]. Transactions of China Electrotechnical Society, 2020, 35(21): 4532-4543. [10] 唐权, 胥威汀, 叶希, 等. 考虑聚合商参与的配电网分布式储能系统优化配置[J]. 电力系统保护与控制, 2019, 47(17): 83-92. Tang Quan, Xu Weiting, Ye Xi, et al.Optimized configuration of distributed energy storage system in distribution network considering the participation of aggregators[J]. Power System Protection and Control, 2019, 47(17): 83-92. [11] 李志伟, 赵书强, 刘应梅. 电动汽车分布式储能控制策略及应用[J]. 电网技术, 2016, 40(2): 442-450. Li Zhiwei, Zhao Shuqiang, Liu Yingmei.Control strategy and application of distributed electric vehicle energy storage[J]. Power System Technology, 2016, 40(2): 442-450. [12] 尹渠凯, 米增强, 贾雨龙, 等. 基于改进K-means聚类的电力市场下分布式储能系统经济性调控模型[J]. 电力建设, 2019, 40(5): 20-27. Yin Qukai, Mi Zengqiang, Jia Yulong, et al.Economy regulation method for distributed energy storage in distribution network according to K-means clustering[J]. Electric Power Construction, 2019, 40(5): 20-27. [13] 林立乾, 米增强, 贾雨龙, 等. 面向电力市场的分布式储能聚合参与电网调峰[J]. 储能科学与技术, 2019, 8(2): 276-283. Lin Liqian, Mi Zengqiang, Jia Yulong, et al.Distributed energy storage aggregation for power grid peak shaving in a power market[J]. Energy Storage Science and Technology, 2019, 8(2): 276-283. [14] 雍培, 张宁, 慈松, 等. 5G通信基站参与需求响应:关键技术与前景展望[J]. 中国电机工程学报, 2021, 41(16): 5540-5552. Yong Pei, Zhang Ning, Ci Song, et al.5G communication base stations participating in demand response:key technologies and prospects[J]. Proceedings of the CSEE, 2021, 41(16): 5540-5552. [15] 慈松. 能量信息化和互联网化管控技术及其在分布式电池储能系统中的应用[J]. 中国电机工程学报, 2015, 35(14): 3643-3648. Ci Song.Energy informatization and internet-based management and its applications in distributed energy storage system[J]. Proceedings of the CSEE, 2015, 35(14): 3643-3648. [16] 康重庆, 刘静琨, 张宁. 未来电力系统储能的新形态:云储能[J]. 电力系统自动化, 2017,41(21): 2-8, 16. Kang Chongqing, Liu Jingkun, Zhang Ning.A new form of energy storage in future power system:cloud energy storage[J]. Automation of Electric Power Systems, 2017, 41(21): 2-8, 16. [17] 岑海凤, 许苑, 王军伟, 等. 通信基站备用电池的云储能系统设计与应用[J]. 电源技术, 2020, 44(6): 902-904. Cen Haifeng, Xu Yuan, Wang Junwei, et al.Design and application of cloud energy storage system for backup battery in communication base station[J]. Chinese Journal of Power Sources, 2020, 44(6): 902-904. [18] 吴界辰, 艾欣, 胡俊杰. 需求侧资源灵活性刻画及其在日前优化调度中的应用[J]. 电工技术学报, 2020, 35(9): 1973-1984. Wu Jiechen, Ai Xin, Hu Junjie.Methods for characterizing flexibilities from demand-side resources and their applications in the day-ahead optimal scheduling[J]. Transactions of China Electrotechnical Society, 2020, 35(9): 1973-1984. [19] 贾雨龙, 米增强, 余洋, 等. 计及不确定性的柔性负荷聚合商随机-鲁棒投标决策模型[J]. 电工技术学报, 2019, 34(19): 4096-4017. Jia Yulong, Mi Zengqiang, Yu Yang, et al.Stochastic-robust decision-making model for flexible load aggregator considering uncertainties[J]. Transactions of China Electrotechnical Society, 2019, 34(19): 4096-4017. [20] 王晓云, 黄宇红, 崔春风, 等. C-RAN:面向绿色的未来无线接入网演进[J]. 中国通信, 2010, 7(3): 107-112. Wang Xiaoyun, Huang Yuhong, Cui Chunfeng, et al.C-RAN: evolution toward green radio access network[J]. China Communications, 2010, 7(3): 107-112. [21] 吴坤. 5G移动通信网络基于能效的资源管理[D]. 成都: 电子科技大学, 2016. [22] 王育飞, 郑云平, 薛花, 等. 基于增强烟花算法的移动式储能削峰填谷优化调度[J]. 电力系统自动化, 2021, 45(5): 48-56. Wang Yufei, Zheng Yunping, Xue Hua, et al.Optimal dispatch of mobile energy storage for peak load shifting based on enhanced firework algorithm[J]. Automation of Electric Power Systems, 2021, 45(5): 48-56. [23] 从子奇. 基于数据挖掘的TD-LTE基站负载研究[D]. 北京: 北京邮电大学, 2018.