Abstract:In the applications of wide output voltage range, the LCC resonant converter with frequency modulation has the disadvantage of wide switching frequency range, while the fixed frequency modulation has the disadvantage of narrow soft-switching range. In this paper, a T-type half-bridge LCC resonant converter with linear-resonance (L-R) composite modulation is proposed. The energy storage stage is added to the traditional resonant mode, which makes the resonant current show linear and resonant changes in one cycle. It can improve the voltage gain, and has the characteristics of soft switching and no circulating current in the full load range. The proposed converter operates in resonant-linear feedback (R-LF) and linear boost-resonant (LB-R) modes by adopting PFM-PWM composite modulation, and can achieve wide voltage gain range with narrow switching frequency. The switching frequency is fixed in the light load condition, which improves light load efficiency. In this paper, the operating principle was introduced in detail, and the expression of voltage gain was derived. The design steps based on constant current and constant voltage charging were given. Finally, an experimental prototype was built, and the results proved the correctness of the theoretical analysis.
[1] Ullah W, Khan F, Umair M.Design and optimization of segmented PM consequent pole hybrid excited flux switching machine for EV/HEV application[J]. CES Transactions on Electrical Machines and Systems, 2020, 4(3): 206-214. [2] 冯兴田, 邵康, 崔晓, 等. 基于多模态切换的宽电压增益LLC谐振变换器控制策略[J]. 电工技术学报, 2020, 35(20): 4350-4360. Feng Xingtian, Shao Kang, Cui Xiao, et al.Control strategy of wide voltage gain LLC resonant converter based on multi-mode switching[J]. Transactions of China Electrotechnical Society, 2020, 35(20): 4350-4360. [3] 张洪寅, 童朝南, 王泽庭. 基于临界模态的DCM- LCC谐振变换器的归一化分析与设计[J]. 电工技术学报, 2019, 34(1): 103-115. Zhang Hongyin, Tong Chaonan, Wang Zeting.Nor- malized analysis and design of DCM-LCC resonant converter based on critical current mode[J]. Transa- ctions of China Electrotechnical Society, 2019, 34(1): 103-115. [4] 刘晋源, 吕林, 高红均, 等. 计及分布式电源和电动汽车特性的主动配电网规划[J]. 电力系统自动化, 2020, 44(12): 41-48. Liu Jinyuan, Lü Lin, Gao Hongjun, et al.Planning of active distribution network considering characteristics of distributed generator and electric vehicle[J]. Auto- mation of Electric Power Systems, 2020, 44(12): 41-48. [5] Steigerwald R L.A comparison of half-bridge resonant converter topologies[J]. IEEE Transactions on Power Electronics, 1988, 3(2): 174-182. [6] Yang Rui, Ding Hongfa, Xu Yun.An analytical steady-state model of LCC type series-parallel resonant converter with capacitive output filter[J]. IEEE Transactions on Power Electronics, 2014, 29(1): 328-338. [7] Lin F, Huang Shiming, Yeh P, et al.DSP-based probabilistic fuzzy neural network control for Li-Ion battery charger[J]. IEEE Transactions on Power Electronics, 2012, 27(8): 3782-3794. [8] 李红梅, 张恒果, 崔超. 车载充电PWM软开关DC- DC变换器研究综述[J]. 电工技术学报, 2017, 32(24): 59-70. Li Hongmei, Zhang Hengguo, Cui Chao.Review of PWM soft-switching DC-DC converter for on-board chargers[J]. Transactions of China Electrotechnical Society, 2017, 32(24): 59-70. [9] 杨玉岗, 赵金升. 高增益对称双向LCLC谐振变换器的研究[J]. 电工技术学报, 2020, 35(14): 3007-3017. Yang Yugang, Zhao Jinsheng.Normalized research on high-gain symmetric bidirectional CLC resonant converter[J]. Transactions of China Electrotechnical Society, 2020, 35(14): 3007-3017. [10] 钱城晖, 钱挺. 辅助半桥调节的定频LLC谐振功率变换器[J]. 电工技术学报, 2019, 34(7): 1459-1467. Qian Chenghui, Qian Ting.Fixed-frequency LLC resonant converter adjusted by auxiliary half- bridge[J]. Transactions of China Electrotechnical Society, 2019, 34(7): 1459-1467. [11] Bhat A K S. Fixed-frequency PWM series-parallel resonant converter[J]. IEEE Transactions on Industry Applications, 1992, 28(5): 1002-1009. [12] Czarkowski D, Kazimierczuk M K.Phase-controlled series-parallel resonant converter[J]. IEEE Transa- ctions on Power Electronics, 1993, 8(3): 309-319. [13] Zheng Sanbo, Czarkowski D.Modeling and digital control of a phase-controlled series-parallel resonant converter[J]. IEEE Transactions on Industrial Elec- tronics, 2007, 54(2): 707-715. [14] 陈一鸣, 许建平, 李兵兵, 等. CCVM-DCVM边界模式定频LCC谐振变换器设计[J]. 中国电机工程学报, 2018, 38(3): 850-860. Chen Yiming, Xu Jianping, Li Bingbing, et al.Design of fixed frequency LCC resonant converter operating in CCVM-DCVM boundary mode[J]. Proceedings of the CSEE, 2018, 38(3): 850-860. [15] 高铁峰, 张森, 赵剑锋, 等. LCC谐振变换器非对称移相控制及效率优化方法[J]. 电工技术学报, 2017, 32(8): 208-219. Gao Tiefeng, Zhang Sen, Zhao Jianfeng, et al.Asymmetrical phase shift control and efficiency optimization strategy for LCC resonant converter[J]. Transactions of China Electrotechnical Society, 2017, 32(8): 208-219. [16] 高铁峰, 张森, 朱朱, 等. 自持移相LCC谐振变换器稳态分析及参数设计[J]. 电力自动化设备, 2016, 36(8): 122-129. Gao Tiefeng, Zhang Sen, Zhu Zhu, et al.Steady-state analysis and parameter design for SSPSM-LCC resonant converter[J]. Electric Power Automation Equipment, 2016, 36(8): 122-129. [17] 曹靖, 许建平, 陈一鸣, 等. PWM-PFM混合控制LCC谐振变换器研究[J]. 中国电机工程学报, 2018, 38(12): 3629-3637, 23. Cao Jing, Xu Jianping, Chen Yiming.Study of PWM- PFM hybrid controlled LCC resonant converter[J]. Proceedings of the CSEE, 2018, 38(12): 3629-3637, 23. [18] Chen Yiming, Xu Jianping, Wang Yao.A dual-carrier modulation technique for half-bridge resonant con- verter with wide soft-switching range[J]. IEEE Transactions on Industrial Electronics, 2019, 66(1): 223-232. [19] Li Zhenyu, Zhao Jun, Chen Zheng, et al.A design method for LCC resonant converter over wide load range with wide-range input and output[C]//IEEE PES Asia-Pacific Power and Energy Engineering Con- ference (APPEEC), Macao, China, 2019: 1-6. [20] 林磊明, 许建平, 陈一鸣, 等. 一种宽范围ZVS定频LCC谐振变换器设计[J]. 中国电机工程学报, 2018, 38(16): 4846-4854, 4990. Lin Leiming, Xu Jianping, Chen Yiming, et al.Fixed frequency LCC resonant converter design with wide zero voltage switching range[J]. Proceedings of the CSEE, 2018, 38(16): 4846-4854, 4990. [21] Chen Yiming, Yao Shiying, Gou Jijun, et al.Analysis and design of half-bridge LCC resonant converter with Buck-Boost integration adopting dual carrier modulation[C]//2019 IEEE Innovative Smart Grid Technologies-Asia (ISGT Asia), Chengdu, China, 2019: 2190-2195.