电工技术学报  2021, Vol. 36 Issue (10): 2199-2206    DOI: 10.19595/j.cnki.1000-6753.tces.200320
电能存储与应用 |
基于多影响因素建立锂离子电池充电内阻的动态模型
潘海鸿1, 张沫1, 王惠民1, 冯喆1, 陈琳1,2
1.广西大学机械工程学院 南宁 530004;
2.广西电化学能源材料重点实验室培育基地可再生能源材料协同创新中心 南宁 530004
Establishing a Dynamic Model of Lithium-Ion Battery Charging Internal Resistance Based on Multiple Factors
Pan Haihong1, Zhang Mo1, Wang Huimin1, Feng Zhe1, Chen Lin1,2
1. School of Mechanical Engineering Guangxi University Nanning 530004 China;
2. Guangxi Key Laboratory of Electrochemical Energy Materials Collaborative Innovation Center of Renewable Energy Materials Nanning 530004 China
全文: PDF (2951 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 锂离子电池内阻建模对研究电池热管理具有重要意义。充电内阻受温度、充电倍率等众多因素的影响,该文分析电池的内阻变化特性与多种影响因素(充电倍率、荷电状态以及温度)之间的关系,采用最小二乘法的二元多项式和三次样条插值算法对不同充电倍率、荷电状态以及温度下的电池充电内阻进行建模,并采用所建立的多因素动态内阻模型对不同状态下的充电内阻进行估算。实验结果表明,所建立的动态内阻模型获得的内阻估算值与实验值的最大误差不超过6mΩ,证明所提出的电池充电内阻建模方法的有效性。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
潘海鸿
张沫
王惠民
冯喆
陈琳
关键词 充电内阻多因素内阻模型最小二乘二元多项式三次样条    
Abstract:Modeling the internal resistance of lithium-ion batteries is of great significance for the thermal management of batteries. The internal resistance of charging is affected by many factors such as temperature and charging rate. Therefore, the relationship between the battery's internal resistance change characteristics and various influencing factors (charging rate, state of charge and temperature) is analyzed. The binary polynomial method based on the least square and the cubic spline interpolation algorithm are used to calculate the battery charging internal resistance at different charging rates, SOC, and temperature. The dynamic model of the internal resistance of multi-factor dynamic charge is established, and the charging internal resistance is estimated in different states. The results show that the maximum error between the internal resistance estimated value by the dynamic model and the experimental value does not exceed 6 mΩ, which proves that the proposed method for modeling battery charging internal resistance is effective.
Key wordsCharging internal resistance    multiple factors    internal resistance model    least squares    binary polynomial    cubic spline   
收稿日期: 2020-04-01     
PACS: TM911  
基金资助:国家自然科学基金(51667006)和广西自然科学基金(2015GXNSFAA139287)资助项目
通讯作者: 陈琳,女,1973年生,教授,博士生导师,研究方向为信号检测与处理和电池管理。E-mail:gxdxcl@163.com   
作者简介: 潘海鸿,男,1966年生,教授,博士生导师,研究方向为动力电池系统信号采样及电池管理。E-mail:hustphh@163.com
引用本文:   
潘海鸿, 张沫, 王惠民, 冯喆, 陈琳. 基于多影响因素建立锂离子电池充电内阻的动态模型[J]. 电工技术学报, 2021, 36(10): 2199-2206. Pan Haihong, Zhang Mo, Wang Huimin, Feng Zhe, Chen Lin. Establishing a Dynamic Model of Lithium-Ion Battery Charging Internal Resistance Based on Multiple Factors. Transactions of China Electrotechnical Society, 2021, 36(10): 2199-2206.
链接本文:  
https://dgjsxb.ces-transaction.com/CN/10.19595/j.cnki.1000-6753.tces.200320          https://dgjsxb.ces-transaction.com/CN/Y2021/V36/I10/2199