Abstract:The static mathematical relationship between the geomagnetically induction current (GIC) and the reactive power of the transformer is derived by using two linear lines to represent the core curve of the transformer. On this basis, considering GIC quasi-DC characteristics and the influence of transformer triangular winding on zero-sequence flux, the quasi-DC zero-sequence equivalent circuit model of transformer core during geomagnetic storm is established, which is used to calculate the actual DC size of the transformer core and reactive power loss. The simulation calculation of a 1 000kV AC transformer and an 800kV converter transformer is carried out with the measured GIC second data processed by interpolation. The results show that when considering GIC quasi-DC characteristics, the presence of the triangular winding will affect the reactive power loss of the transformer and this effect is particularly significant in the zero crossing phase of the waveform corresponding to the change of GIC flow direction, and the converter transformer under the same GIC current is more affected. Through sensitivity analysis, the main parameters which determine the transformer affected by GIC quasi-DC characteristics are found.
王泽忠, 黄天超. 变压器地磁感应电流-无功功率动态关系分析[J]. 电工技术学报, 2021, 36(9): 1948-1955.
Wang Zezhong, Huang Tianchao. Analysis of Geomagnetically Induction Current-Reactive Power Dynamic Relationship of Transformer. Transactions of China Electrotechnical Society, 2021, 36(9): 1948-1955.
[1] Albertson V D, Thorson J M, Miske S A, et al. The effects of geomagnetic storms on electric power system[J]. IEEE Transactions on Power Apparatus and System, 1974, PAS-93(4): 1031-1044. [2] 赵小军, 刘小娜, 肖帆, 等. 基于Preisach模型的取向硅钢片直流偏磁磁滞及损耗特性模拟[J]. 电工技术学报, 2020, 35(9): 1849-1857. Zhao Xiaojun, Liu Xiaola, Xiao Fan, et al.Simulation of DC magnetic bias hysteresis and loss characteristics of oriented silicon steel based on Preisach model[J]. Transactions of China Electrotechnical Society, 2020, 35(9): 1849-1857. [3] Girgis R S, Vedante K B.Impact of GICs on power transformers: overheating is not the real issue[J]. IEEE Electrification Magazine, 2015, 3(4): 8-12. [4] Walling R A, Khan A N.Characteristics of transformer exciting-current during geomagnetic disturbances[J]. IEEE Transactions on Power Delivery, 1991, 6(4): 1707-1714. [5] 潘超, 王格万, 蔡国伟, 等. 交直流混杂模式下变压器励磁电流谐波与箱体损耗映射研究[J]. 电工技术学报, 2019, 34(13): 2830-2838. Pan Chao, Wang Gewan, Cai Guowei, et al.Study on the mapping of transformer excitation current harmonics and enclosure loss in AC-DC hybrid mode[J]. Transactions of China Electrotechnical Society, 2019, 34(13): 2830-2838. [6] 张鹏宁, 李琳, 程志光, 等. 并联电抗器与变压器模型铁心振动仿真与试验对比[J]. 电工技术学报, 2018, 33(22): 5273-5281. Zhang Pengning, Li Lin, Cheng Zhiguang, et al.Vibration simulation and test comparison of model cores of shunt reactor and transformer[J]. Transactions of China Electrotechnical Society, 2018, 33(22): 5273-5281. [7] 杨晓辉, 王丰华, 段若晨, 等. 500kV电力变压器直流偏磁耐受性能的仿真研究[J]. 电力系统保护与控制, 2014, 42(14): 60-66. Yang Xiaohui, Wang Fenghua, Duan Ruocheng, et al.Simulation of DC magnetic bias tolerance of 500kV power transformer[J]. Power System Protection and Control, 2014, 42(14): 60-66. [8] 李冰, 王泽忠, 刘恪, 等. 特高压变压器直流偏磁对绕组电流的影响[J]. 电工技术学报, 2020, 35(7): 1422-1431. Li Bing, Wang Zezhong, Liu Ke, et al.Influence of DC bias on winding current of UHV transformer[J]. Transactions of China Electrotechnical Society, 2020, 35(7): 1422-1431. [9] 王梅义, 吴竞昌, 蒙定中. 大电网系统技术[M]. 2版. 北京: 中国电力出版社, 1995. [10] 刘连光, 王开让, 郭世晓, 等. 双电压等级电网GIC的相互作用特征[J]. 中国科学·技术科学, 2015, 45(12): 1311-1320. Liu Lianguang, Wang Kairang, Guo Shixiao, et al.Characteristics of GIC interaction in a dual-voltage-level power network[J]. Science·Technological Science, 2015, 45(12): 1311-1320. [11] 王泽忠, 谭瑞娟, 李书连, 等. 基于动态电感-励磁电流曲线的特高压变压器空载直流偏磁计算[J]. 电工技术学报, 2017, 32(10): 154-161. Wang Zezhong, Tan Ruijuan, Li Shulian, et al.Calculation of no-load DC bias of UHV Transformer based on dynamic inductance-excitation current curve[J]. Transactions of China Electrotechnical Society, 2017, 32(10): 154-161. [12] 王泽忠, 谭瑞娟, 刘连光, 等. 特高压变压器直流偏磁计算及无功功率特性分析[J]. 高压电器, 2017, 53(2): 101-107. Wang Zezhong, Tan Ruijuan, Liu Lianguang, et al.DC bias calculation and reactive power characteristic analysis of UHV transformer[J]. High Voltage Apparatus, 2017, 53(2): 101-107. [13] 刘连光, 朱溪, 王泽忠, 等. 基于K值法的单相四柱式特高压主体变的GIC-Q损耗计算[J]. 高电压技术, 2017, 43(7): 2340-2348. Liu Lianguang, Zhu Xi, Wang Zezhong, et al.GIC-Q loss calculation of single-phase four-column UHV transformer based on K-value method[J]. High Voltage Engineering, 2017, 43(7): 2340-2348. [14] Dong Xuzhu, Liu Yilu, Kappenman J G.Comparative analysis of exciting current harmonics and reactive power consumption from GIC saturated transformers[C]// IEEE Power Engineering Society Winter Meeting, Columbus, OH, USA, 2001: 318-322. [15] Marti L, Berge J, Varma R K.Determination of geomagnetically induced current flow in a transformer from reactive power absorption[J]. IEEE Transactions on Power Delivery, 2013, 28(3): 1280-1288. [16] Price P R.Geomagnetically induced current effects on transformers[J]. IEEE Transactions on Power Delivery, 2002, 17(4): 1002-1008. [17] Rezaei-Zare A.Reactive power loss versus GIC characteristic of single-phase transformers[J]. IEEE Transactions on Power Delivery, 2015, 30(3): 1639-1640. [18] 刘教民, 朱溪, 刘洪正, 等. 电力变压器的GIC-Q损耗算法的研究综述[J]. 高电压技术, 2018, 44(7): 2284-2291. Liu Jiaomin, Zhu Xi, Liu Hongzheng, et al.A review of GIC-Q loss algorithms for power transformers[J]. High Voltage Engineering, 2018, 44(7): 2284-2291. [19] Mousavi S A, Bonmann D.Analysis of asymmetric magnetization current and reactive power demand of power transformers due to GIC[J]. Procedia Engineering, 2017, 202: 264-272. [20] You Y, Fuchs E F, Lin D, et al.Reactive power demand of transformers with DC bias[J]. IEEE Industry Applications Magazine, 1996, 2(4): 45-52. [21] Rezaei-Zare A.Behavior of single-phase transformers under geomagnetically induced current conditions[J]. IEEE Transactions on Power Delivery, 2014, 29(2): 916-925.