Application of Functional Magnetic Resonance Imaging in the Field of Oncology
Feng Huan1,2, Jiang Hui1,2, Wang Xuemei1,2
1. State Key Laboratory of Bioelectronics Southeast University Nanjing 210096 China; 2. School of Biological Science & Medical Engineering Southeast University Nanjing 210096 China
Abstract:As a non-invasive and non-ionizing radiation imaging, functional magnetic resonance imaging (fMRI) can be used for imaging diagnosis of systemic diseases, such as cardiovascular diseases, neurodegenerative diseases, tumors, trauma, inflammation and so on. Tumor is the second leading cause of death in the world, and scientists from all over the world are committed to tackling tumors. fMRI imaging of tumors can achieve the classification, grading and staging of tumors, which plays an important role in the formulation of treatment plans, evaluation and prediction of curative effect. This paper summarizes and discusses 6 types of fMRI, including diffusion weighted imaging (DWI), diffusion tensor imaging (DTI), perfusion weighted imaging (PWI), susceptibility weighted imaging (SWI), magnetic resonance spectroscopy (MRS), and blood oxygen level dependent functional magnetic resonance imaging (BOLD-fMRI). The application research of multimodal imaging positron emission tomography/magnetic resonance imaging (PET/MRI) in the field of oncology and the application prospects in related therapeutic fields are discussed.
冯焕, 姜晖, 王雪梅. 功能磁共振成像在肿瘤学领域的应用[J]. 电工技术学报, 2021, 36(4): 705-716.
Feng Huan, Jiang Hui, Wang Xuemei. Application of Functional Magnetic Resonance Imaging in the Field of Oncology. Transactions of China Electrotechnical Society, 2021, 36(4): 705-716.
[1] 任自艳, 谢德馨, 李会香. 开放式MRI永磁型主磁体的匀场方法[J]. 电工技术学报, 2010, 25(3): 1-5. Ren Ziyan, Xie Dexin, Li Huixiang.Shimming method for open MRI permanent main magnet[J]. Transactions of China Electrotechnical Society, 2010, 25(3): 1-5. [2] Grasland-Mongrain P, Lafon C.Review on bio- medical techniques for imaging electrical impe- dance[J]. IRBM, 2018, 39(4): 243-250. [3] 李星, 杨帆, 余晓, 等. 基于内源式电阻抗成像的接地网缺陷诊断逆问题研究[J]. 电工技术学报, 2019, 34(5): 902-909. Li Xing, Yang Fan, Yu Xiao, et al.Research on the inverse problem of grounding grid fault diagnosis based on inner-source EIT[J]. Transactions of China Electrotechnical Society, 2019, 34(5): 902-909. [4] Wan Min, Healy J J, Sheridan J T.Terahertz phase imaging and biomedical applications[J]. Optics and Laser Technology, 2020: 105859. [5] Xia Yang, Matham M V, Su Haibin, et al.Nanoparticulate contrast agents for multimodality molecular imaging[J]. Journal of Biomedical Nano- technology, 2016, 12(8): 1553-1584. [6] 刘红梅, 董守龙, 宁郡怡, 等. 纳秒脉冲高频透膜效应优先杀伤化疗抗性肿瘤细胞的仿真与实验研究[J]. 电工技术学报, 2019, 34(22): 4839-4848. Liu Hongmei, Dong Shoulong, Ning Junyi, et al.Simulation and experimental study on preferential killing of chemoresistance tumor cells induced by the high-frequency permeation effect of nanosecond pulse field[J]. Transactions of China Electrotechnical Society, 2019, 34(22): 4839-4848. [7] Wallyn J, Anton N, Akram S, et al.Biomedical imaging: principles, technologies, clinical aspects, contrast agents, limitations and future trends in nanomedicines[J]. Pharmaceutical Research, 2019, 36(6): 78. [8] Tognarelli J M, Dawood M, Shariff M I F, et al. Magnetic resonance spectroscopy: principles and techniques: lessons for clinicians[J]. Journal of Clinical and Experimental Hepatology, 2015, 5(4): 320-328. [9] Ratai Eva-Maria, Gilberto G R.Clinical magnetic resonance spectroscopy of the central nervous system[J]. Handbook of Clinical Neurology, 2016, 135: 93-116. [10] Meoded A, Orman G, Huisman T A G M. Diffusion weighted and diffusion tensor MRI in pediatric neuroimaging including connectomics: principles and applications[J]. Seminars in Pediatric Neurology, 2020, 33: 100797. [11] Fornasa F.Diffusion-weighted magnetic resonance imaging: what makes water run fast or slow?[J]. Journal of Clinical Imaging Science, 2011, 1: 27. [12] Messina C, Bignone R, Bruno A, et al.Diffusion- weighted imaging in oncology: an update[J]. Cancers, 2020, 12(6): 1493. [13] Baliyan V, Das C J, Sharma R, et al.Diffusion weighted imaging: technique and applications[J]. World Journal of Radiology, 2016, 8(9): 785-798. [14] Chilla G S, Tan C H, Xu Chenjie, et al.Diffusion weighted magnetic resonance imaging and its recent trend-a survey[J]. Quantitative Imaging in Medicine and Surgery, 2015, 5(3): 407-422. [15] Malayeri A A, El K R H, Zaheer A, et al. Principles and applications of diffusion-weighted imaging in cancer detection, staging, and treatment follow-up[J]. Radiographics, 2011, 31(6): 1773-1791. [16] 郭磊, 刘东钊, 黄凤荣, 等. 基于突触可塑性的自适应脉冲神经网络在高斯白噪声刺激下的抗扰功能研究[J]. 电工技术学报, 2020, 35(2): 225-235. Guo Lei, Liu Dongzhao, Huang Fengrong, et al.Research on disturbance rejection of adaptive spiking neural network based on synaptic plasticity under white gaussian noise[J]. Transactions of China Electrotechnical Society, 2020, 35(2): 225-235. [17] Jahng Geon-Ho, Li Ka-Loh, Ostergaard L, et al.Perfusion magnetic resonance imaging: a com- prehensive update on principles and techniques[J]. Korean Journal of Radiology, 2014, 15(5): 554-577. [18] Liu Saifeng, Buch S, Chen Yongsheng, et al. Susceptibility-weighted imaging: current status and future directions[J]. NMR in Biomedicine, 2017, 30(4): 10.1002/nbm.3552. [19] Yan Fuhua, He Naying, Lin Huimin, et al.Iron deposition quantification: applications in the brain and liver[J]. Journal of Magnetic Resonance Imaging, 2018, 48(2): 301-317. [20] Ruetten P P R, Gillard J H, Graves M J. Introduction to quantitative susceptibility mapping and susce- ptibility weighted imaging[J]. British Journal of Radiology, 92(1101): 20181016. [21] Barrett T, Brechbiel M, Bernardo M, et al.MRI of tumor angiogenesis[J]. Journal of Magnetic Resonance Imaging, 2007, 26(2): 235-249. [22] Detre J A, Wang J J.Technical aspects and utility of fMRI using BOLD and ASL[J]. Clinical Neurophy- siology, 2002, 113(5): 621-634. [23] Edlow B L, Giacino J T, Wu O.Functional MRI and outcome in traumatic coma[J]. Current Neurology and Neuroscience Reports, 2013, 13(9): 375. [24] Naik M L, Mannelli H, Chandarana V, et al.Hepato- cellular carcinoma assessment of tumor oxygenation with BOLD MRI[C]//16th International Society for Magnetic Resonance in Medicine, Toronto, 2008: 1-2. [25] 胡盛寿, 高润霖, 刘力生, 等. 《中国心血管病报告2018》[J]. 中国循环杂志, 2019, 34(3): 209-220. Hu Chengshou, Gao Runlin, Liu Lisheng, et al.Summary of the 2018 report on cardiovascular diseases in China[J]. Chinese Circulation Journal, 2019, 34(3): 209-220. [26] 郑荣寿, 孙可欣, 张思维, 等. 2015年中国恶性肿瘤流行情况分析[J]. 中华肿瘤杂志, 2019, 30(1): 19-28. Zheng Rongshou, Sun Kexin, Zhang Siwei, et al.Report of cancer epidemiology in China, 2015[J]. Chinese Journal of Oncology, 2019, 30(1): 19-28. [27] Wang Jifei, Sun Meili, Liu Dawei, et al.Correlation between apparent diffusion coefficient and histo- pathology subtypes of osteosarcoma after neoadjuvant chemotherapy[J]. Acta Radiologica, 2017, 58(8): 971-976. [28] Haj-Mirzaian A, Kadivar A, Kamel I R, et al.Updates on imaging of liver tumors[J]. Current Oncology Reports, 2020, 22(5): 46. [29] Choi Y J, Lee I S, Song Y S, et al.Diagnostic performance of diffusion-weighted (DWI) and dynamic contrast-enhanced (DCE) MRI for the differentiation of benign from malignant soft-tissue tumors[J]. Journal of Magnetic Resonance Imaging, 2019, 50(3): 798-809. [30] Dong Yin, Liu Qingwei.Differentiation of malignant from benign pheochromocytomas with diffusion- weighted and dynamic contrast enhanced magnetic resonance at 3.0T[J]. Journal of Computer Assisted Tomography, 2012, 36(4): 361-366. [31] Mickael T, Mali R, Madelin G, et al.Diagnostic test accuracy of ADC values for identification of clear cell renal cell carcinoma: systematic review and meta-analysis[J]. European Radiology, 2020, 30(7): 4023-4038. [32] Dhanda S, Thakur M, Kerkar R, et al.Diffusion- weighted imaging of gynecologic tumors: diagnostic pearls and potential pitfalls[J]. Radiographics, 2014, 34(5): 1393-1416. [33] Giganti F, Ambrosi A, Chiari D, et al.Apparent diffusion coefficient by diffusion-weighted magnetic resonance imaging as a sole biomarker for staging and prognosis of gastric cancer[J]. Chinese Journal of Cancer Research, 2017, 29(2): 118-126. [34] Aydin S, Fatihoglu E, Kosar P N, et al.Perfusion and permeability MRI in glioma grading[J]. Egyptian Journal of Radiology and Nuclear Medicine, 2020, 51(1): 2. [35] Shi Ruihua, Jiang Tao, Si Lifang, et al.Correlations of magnetic resonance, perfusion-weighed imaging parameters and microvessel density in meningioma[J]. Journal of the Balkan Union of Oncology, 2016, 21(3): 709-713. [36] Zhang Hao, Rodiger L A, Shen Tianzhen, et al.Perfusion MR imaging for differentiation of benign and malignant meningiomas[J]. Neuroradiology, 2008, 50(6): 525-530. [37] Low R N, Barone R M, Duggan B, et al.Detection of mesenteric tumor using dynamic contrast enhanced MRI[J]. Annals of Surgical Oncology, 2020, 27(7): 2525-2536. [38] Zhang Li, Tang Min, Min Zhiqian, et al.Accuracy of combined dynamic contrast-enhanced magnetic resonance imaging and diffusion-weighted imaging for breast cancer detection: a meta-analysis[J]. Acta Radiologica, 2016, 57(6): 651-660. [39] Gaustad Jon-Vidar, Hauge A, Wegner C S, et al.DCE-MRI of tumor hypoxia and hypoxia- associated aggressiveness[J]. Cancers, 2020, 12(7): 1979. [40] Halefoglu A M, Yousem D M.Susceptibility weighted imaging: clinical applications and future directions[J]. World Journal of Radiology, 2018, 10(4): 30-45. [41] Xing Wei, He Xiaozhou, Kassir M A, et al.Evaluating hemorrhage in renal cell carcinoma using susceptibility weighted imaging[J]. Plos One, 2013, 8(2): e57691. [42] Rauscher A, Sedlacik J, Fitzek C, et al.High resolution susceptibility weighted MR-imaging of brain tumors during the application of a gaseous agent[J]. Rofo-Fortschritte Auf Dem Gebiet Der Rontgenstrahlen Und Der Bildgebenden Verfahren, 2005, 177(8): 1065-1069. [43] Sehgal V, Delproposto Z, Haacke E M, et al.Clinical applications of neuroimaging with susceptibility- weighted imaging[J]. Journal of Magnetic Resonance Imaging, 2005, 22(4): 439-450. [44] Hammond K E, Lupo J M, Xu Duan, et al.Development of a robust method for generating 7.0T multichannel phase images of the brain with application to normal volunteers and patients with neurological diseases[J]. Neuroimage, 2008, 39(4): 1682-1692. [45] Thomas B, Somasundaram S, Thamburaj K, et al.Clinical applications of susceptibility weighted MR imaging of the brain-a pictorial review[J]. Neuroradiology, 2008, 50(2): 105-116. [46] Wu Zhen, Mittal S, Kish K, et al.Identification of calcification with MRI using susceptibility-weighted imaging: a case study[J]. Journal of Magnetic Resonance Imaging, 2009, 29(1): 177-182. [47] Zulfiqar M, Dumrongpisutikul N, Intrapiromkul J, et al.Detection of intratumoral calcification in oligo- dendrogliomas by susceptibility-weighted MR Imaging[J]. American Journal of Neuroradiology, 2012, 33(5): 858-864. [48] Dou Shewei, Bai Yan, Shandil A, et al.Detecting prostate cancer and prostatic calcifications using advanced magnetic resonance imaging[J]. Asian Journal of Andrology, 2017, 19(4): 439-443. [49] Di L A, Lam T, Alcaide-Leon P, et al.Magnetic resonance susceptibility weighted imaging in neuro- surgery: current applications and future perspe- ctives[J]. Journal of Neurosurgery, 2015, 123(6): 1463-1475. [50] Nelson S J, Kadambi A K, Park I, et al.Association of early changes in H-1 MRSI parameters with survival for patients with newly diagnosed glioblastoma receiving a multimodality treatment regimen[J]. Neuro-Oncology, 2017, 19(3): 430-439. [51] Payne G S. Clinical applications of in vivo magnetic resonance spectroscopy in oncology[J]. Physics in Medicine and Biology, 2018, 63(21): 21TR02. [52] Villeirs G M, Oosterlinck W, Vanherreweghe E, et al.A qualitative approach to combined magnetic resonance imaging and spectroscopy in the diagnosis of prostate cancer[J]. European Journal of Radiology, 2010, 73(2): 352-356. [53] van der Kemp Wybe J M, Stehouwer B L, Boer V O, et al. Proton and phosphorus magnetic resonance spectroscopy of the healthy human breast at 7T[J]. NMR in Biomedicine, 2017, 30(2): e3684. [54] Zaric O, Pinker K, Zbyn S, et al.Quantitative sodium MR imaging at 7T: initial results and comparison with diffusion-weighted imaging in patients with breast tumors[J]. Radiology, 2016, 280(1): 39-48. [55] Takeuchi M, Matsuzaki K, Harada M.Carcinosarcoma of the uterus: MRI findings including diffusion- weighted imaging and MR spectroscopy[J]. Acta Radiologica, 2016, 57(10): 1277-1284. [56] Ytre-Hauge S, Esmaeili M, Sjobakk T E, et al.In vivo MR spectroscopy predicts high tumor grade in endometrial cancer[J]. Acta Radiologica, 2018, 59(4): 497-505. [57] Yang Zifeng, Sun Shiqiang, Chen Yuanli, et al.Application of single voxel H-1 magnetic resonance spectroscopy in hepatic benign and malignant lesions[J]. Medical Science Monitor, 2016, 22: 5003-5010. [58] O'Connor J P B, Robinson S P, Waterton J C. Imaging tumour hypoxia with oxygen- enhanced MRI and BOLD MRI[J]. British Journal of Radiology, 2019, 92(1095): 20180642. [59] Rijpkema M, Kaanders J, Joosten F B M, et al. Effects of breathing a hyperoxic hypercapnic gas mixture on blood oxygenation and vascularity of head-and-neck tumors as measured by magnetic resonance imaging[J]. International Journal of Radiation Oncology Biology Physics, 2002, 53(5): 1185-1191. [60] 张培贤, 俞胜男, 丁玖乐, 等. 磁共振血氧水平依赖成像在鼻咽癌化放疗近期疗效评估中的价值[J]. 磁共振成像, 2019, 10(3): 190-194. Zhang Peixian, Yu Shengnan, Ding Jiule, et al.Value of BOLD-MRI for the evaluation of short-term chemoradiotherapy efficacy in nasopharyngealcar- cinoma[J]. Chinese Journal of Magnetic Resonance Imaging, 2019, 10(3): 190-194. [61] Vlieger E J, Majoie C B, Leenstra S, et al.Functional magnetic resonance imaging for neurosurgical planning in neurooncology[J]. European Radiology, 2004, 14(7): 1143-1153. [62] Zheng Yuanda, Sun Xiaojiang, Wang Jian, et al.FDG-PET/CT imaging for tumor staging and definition of tumor volumes in radiation treatment planning in non-small cell lung cancer[J]. Oncology Letters, 2014, 7(4): 1015-1020. [63] Wang Shunyi, Chen Xianxia, Li Yi, et al.Appli- cation of multimodality imaging fusion technology in diagnosis and treatment of malignant tumors under the precision medicine plan[J]. Chinese Medical Journal, 2016, 129(24): 2991-2997. [64] Broski S M, Goenka A H, Kemp B J, et al.Clinical PET/MRI: 2018 update[J]. American Journal of Roentgenology, 2018, 211(2): 295-313. [65] Ishii S, Shimao D, Hara T, et al.Comparison of integrated whole-body PET/MR and PET/CT: is PET/MR alternative to PET/CT in routine clinical oncology?[J]. Annals of Nuclear Medicine, 2016, 30(3): 225-233. [66] Pujara A C, Kim E, Axelrod D, et al.PET/MRI in breast cancer[J]. Journal of Magnetic Resonance Imaging, 2019, 49(2): 328-342. [67] Kong Eun-Jung, Chun Kyung-Ah, Bom Hee-Seung, et al.Initial experience of integrated PET/MR mammography in patients with invasive ductal carcinoma[J]. Hellenic Journal of Nuclear Medicine, 2014, 17(3): 171-176. [68] Nensa F, Beiderwellen K, Heusch P, et al.Clinical applications of PET/MRI: current status and future perspectives[J]. Diagnostic and Interventional Radiology, 2014, 20(5): 438-447. [69] Varoquaux A, Rager O, Poncet A, et al.Detection and quantification of focal uptake in head and neck tumours: F-18-FDG PET/MR versus PET/CT[J]. European Journal of Nuclear Medicine and Molecular Imaging, 2014, 41(3): 462-475. [70] Kubiessa K, Purz S, Gawlitza M, et al.Initial clinical results of simultaneous F-18-FDG PET/MRI in comparison to F-18-FDG PET/CT in patients with head and neck cancer[J]. European Journal of Nuclear Medicine and Molecular Imaging, 2014, 41(4): 639-648. [71] Buchbender C, Heusner T A, Lauenstein T C, et al.Oncologic PET/MRI, part 1: tumors of the brain, head and neck, chest, abdomen, and pelvis[J]. Journal of Nuclear Medicine, 2012, 53(6): 928-938. [72] Buchbender C, Heusner T A, Lauenstein T C, et al.Oncologic PET/MRI, part 2: bone tumors, soft-tissue tumors, melanoma, and lymphoma[J]. Journal of Nuclear Medicine, 2012, 53(8): 1244-1252. [73] Jadvar H, Colletti P M.Competitive advantage of PET/MRI[J]. European Journal of Radiology, 2014, 83(1): 84-94.