Uniform of Unipolar Nanosecond Pulse DBD in Atmospheric Air
Zhang Cheng1, 2, Shao Tao1, 3, Long Kaihua1, 2, Yu Yang1, 2, Yan Ping1, Zhou Yuanxiang3
1. Institute of Electrical Engineering of Chinese Academy of Sciences Beijing 100190 China 2. Graduate University of Chinese Academy of Sciences Beijing 100039 China 3. State Key Laboratory of Control and Simulation of Power System and Generation Equipment Tsinghua University Beijing 100084 China
Abstract:In order to obtain homogenous dielectric barrier discharge (DBD) in atmospheric air, the uniform of nanosecond pulse DBD is studied in the paper. The DBD is excited by positive unipolar nanosecond pulse with a rise time of about 15 ns and a full width at half maximum of 30~40ns, and the conditions and characteristics of homogenous DBD are analyzed by the measurement of their electrical discharge parameters and images. The experimental results show that the discharge current exhibits bipolar and the electrical parameters in unipolar nanosecond-pulse DBD are significantly higher than that in the DBD using ac or microsecond-pulse excitation. It is found that homogenous DBD can be obtained under certain condition. Furthermore, the effects of pulse repetition frequency (PRF) and air gap spacing on the uniform of DBD show that the PRF affects less on the uniform of DBD when both electrodes are covered by dielectrics and the air gap spacing is fixed at 2mm, but the discharge significantly transits from homogenous to filamentary mode when the air gap spacing increases from 2mm to 8mm. In addition, the relation ship between the uniformity of DBD and rise time of applied pulse is discussed.
[1] Kogelschatz U. Dielectric-barrier discharges: their history, discharge physics, and industrial applications[J]. Plasma Chemistry and Plasma Processing, 2003, 23(1): 1-46. [2] Ma H, Qiu Y. A study of ozone synthesis in coaxial cylinder pulse streamer corona discharge reactors[J]. Ozone Science and Engineering, 2003, 25(1): 127-135. [3] 胡建杭, 方志, 章程, 等. 介质阻挡放电处理增强聚合物薄膜表面亲水性[J]. 高电压技术, 2008, 34(5): 883-887. [4] Okazaki S, Kogoma M, Uehara M, et al. Appearance of stable glow discharge in air, argon, oxygen and nitrogen at atmospheric pressure using a 50Hz source[J]. J. Phys. D: Appl. Phys., 1993, 26(5): 889- 892. [5] Massines F, Rabehi A, Decomps P, et al. Experi- mental and theoretical study of a glow discharge at atmosphere pressure controlled by dielectric barrier[J]. J. Appl. Phys., 1998, 86(6): 2950-2957. [6] Liu S, Neiger M. Excitation of dielectric barrier discharges by unipolar submicrosecond square pulses[J]. J. Phys. D: Appl. Phys, 2001, 34(11): 1632-1638. [7] Lu X, Laroussi M. Power consideration in the pulsed dielectric barrier discharge at atmospheric pressure[J]. J. Appl. Phys., 2004, 96(5):3028-3030. [8] Carman R J, Mildren R P, Ward B K, et al. High-pressure (>1 bar) dielectric barrier discharge lamps generating short pulses of high-peak power vacuum ultraviolet radiation[J]. J. Phys. D: Appl. Phys., 2004, 37(7): 2399-2407. [9] Lu X P, Xiong Q, Xiong Z L, et al. Effect of nano-to millisecond pulse on dielectric barrier discharges[J]. IEEE Trans. on Plasma. Sci., 2009, 37(5): 647-652. [10] Shao T, Long K, Zhang C, et al. Experimental study on repetitive unipolar nanosecond-pulse dielectric barrier discharge in air at atmospheric pressure[J]. J. Phys. D: Appl. Phys., 2008, 41(21): 215203(8p). [11] Shao T, Long K H, Zhang C, et al. Electrical characterization of dielectric barrier discharge driven by repetitive nanosecond pulses in atmospheric air[J]. J. Electrostatics, 2009, 67(2-3): 215-221. [12] Shao T, Sun G, Yan P, et al. An experimental investigation of repetitive nanosecond-pulse breakdown in air[J]. J. Phys. D: Appl. Phys., 2006, 39 (10): 2192-2197. [13] Liu S, Neiger M. Electrical modeling of homogeneous dielectric barrier discharges under an arbitrary excitation voltage[J]. J. Phys. D: Appl. Phys, 2003, 36(24): 3144-3150. [14] 龙凯华, 邵涛, 严萍, 等. 高压纳秒脉冲下介质阻挡放电的仿真研究[J]. 高电压技术, 2008, 34(6): 1249-1254. [15] Shi J J, Liu D W, Kong M G. Plasma stability control using dielectric barriers in radio-frequency atmos- pheric pressure glow discharges[J]. Appl. Phys. Lett., 2006, 89(08): 081502(3p). [16] Ayan H. Uniform dielectric barrier discharge with nanosecond pulse excitation for biomedical application[D]. Philade phia: Derexel University, 2009. [17] Eliasson B, Hirth M, Kogelschatz U. Ozone synthesis from oxygen in dielectric barrier discharges[J]. J. Phys. D: Appl. Phys., 1987, 20(11): 1421-1437. [18] 章程, 方志, 胡建杭, 等. 不同条件下介质阻挡放电的仿真与实验研究[J]. 中国电机工程学报, 2008, 28(34): 33-39. [19] Levatter J I, Lin S C. Necessary conditions for the homogenous formation of pulsed avalanche discharges at high gas pressure[J]. J. Appl. Phys., 1980, 81(1): 210-222. [20] 邵涛, 王珏, 黄文力, 等. 120kV下重频纳秒脉冲气体击穿特性研究[J]. 电工技术学报, 2005, 20(7): 44-49.