A Distributionally Robust Optimization Scheduling Model Considering Higher-Order Uncertainty of Wind Power
Xia Peng1, Liu Wenying1, Zhang Yaoxiang1, Wang Weizhou2, Zhang Bolin2
1. State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources North China Electric Power University Beijing 102206 China; 2. State Grid Gansu Electric Power Company Lanzhou 730050 China
Abstract:Higher-order uncertainty of wind power probability distribution is ignored in traditional optimal dispatching methods considering wind power uncertainty, and there is further optimization space for operation cost and wind power consumption capacity. Therefore, a distributionally robust optimization scheduling model considering higher-order uncertainty of wind power was proposed in this paper. Firstly, a wind power higher-order uncertainty model was established by introducing cloud model theory, which could simultaneously describe the uncertainty of wind power and its probability distribution. On this basis, combined with distributionally robust optimization theory, taking the lowest comprehensive operation cost as optimal target, a distributionally robust optimization scheduling model was established. And then, multi-dimensional sequential operation theory was introduced to discretize the higher-order uncertainty cloud model of wind power, so as to transform distributionally robust optimization model into a two-stage nonlinear optimization model and simplified its solution. Finally the effectiveness of proposed model in improving optimal dispatching effect of wind power system are verified.
[1] 薛禹胜, 雷兴, 薛峰, 等. 关于风电不确定性对电力系统影响的评述[J]. 中国电机工程学报, 2014, 34(29): 5029-5040. Xue Yusheng, Lei Xing, Xue Feng, et al.A review on impacts of wind power uncertainties on power systems[J]. Proceedings of the CSEE, 2014, 34(29): 5029-5040. [2] 周安平, 杨明, 赵斌, 等. 电力系统运行调度中的高阶不确定性及其对策评述[J]. 电力系统自动化, 2018, 42(12): 173-183. Zhou Anping, Yang Ming, Zhao Bin, et al.Higher-order uncertainty and corresponding strategies of operation and dispatching for power system[J]. Automation of Electric Power Systems, 2018, 42(12): 173-183. [3] 赵冬梅, 殷加玞. 考虑源荷双侧不确定性的模糊随机机会约束优先目标规划调度模型[J]. 电工技术学报, 2017, 40(5): 50-59. Zhao Dongmei, Yin Jiafu.Fuzzy random chance constrained preemptive goal programming scheduling model considering source-side and load-side uncertainty[J]. Transactions of China Electrotechnical Society, 2017, 40(5): 50-59. [4] 于丹文, 杨明, 韩学山, 等. 计及风电概率分布特征的鲁棒实时调度方法[J]. 中国电机工程学报, 2017, 37(3): 727-738. Yu Danwen, Yang Ming, Han Xueshan, et al.Robust real-time dispatch considering probabilistic distribution of wind generation[J]. Proceedings of the CSEE, 2017, 37(3): 727-738. [5] 孙欣, 方陈, 沈风, 等. 考虑风电出力不确定性的发用电机组组合方法[J]. 电工技术学报, 2017, 32(4): 204-211. Sun Xin, Fang Chen, Shen Feng, et al.An integrated generation-consumption unit commitment model considering the uncertainty of wind power[J]. Transactions of China Electrotechnical Society, 2017, 32(4): 204-211. [6] Albadi M H, El-Saadany E F. Comparative study on impacts of wind profiles on thermal units scheduling costs[J]. IET Renewable Power Generation, 2011, 5(1): 26-35. [7] 唐程辉, 张凡, 张宁, 等. 基于风电场总功率条件分布的电力系统经济调度二次规划方法[J]. 电工技术学报, 2019, 34(10): 2069-2078. Tang Chenghui, Zhang Fan, Zhang Ning, et al.Quadratic programming for power system economic dispatch based on the conditional probability distribution of wind farms sum power[J]. Transactions of China Electrotechnical Society, 2019, 34(10): 2069-2078. [8] Zhang Yiling, Shen Siqian, Mathieu J.Distributionally robust chance-constrained optimal power flow with uncertain renewables and uncertain reserves provided by loads[J]. IEEE Transactions on Power Systems, 2017, 32(2): 1378-1388. [9] Wang Zhen, Bian Qiaoyan, Xin Huanhai, et al.A distributionally robust co-ordinated reserve scheduling model considering CVaR-based wind power reserve requirements[J]. IEEE Transactions on Sustainable Energy, 2017, 7(2): 625-636. [10] Zhou Anping, Yang Ming, Wang Zhaoyu, et al.A linear solution method of generalized robust chance constrained real-time dispatch[J]. IEEE Transactions on Power Systems, 2018, 33(6): 7313-7316. [11] 刘常昱, 李德毅, 潘莉莉. 基于云模型的不确定性知识表示[J]. 计算机工程与应用, 2004, 40(2): 32-35. Liu Changyu, Li Deyi, Pan Lili.Uncertain knowledge represention based on cloud model[J]. Computer Engineering and Applications, 2004, 40(2): 32-35. [12] 刘文颖, 王方雨, 蔡万通, 等. 基于L2范数组合云的风电场短期风速-功率拟合方法[J]. 中国电机工程学报, 2019, 39(4): 1029-1040. Liu Wenying, Wang Fangyu, Cai Wantong, et al.Short term wind speed-power fitting method for wind farms based on L2 norm combination cloud model[J]. Proceedings of the CSEE, 2019, 39(4): 1029-1040. [13] 杨洁, 王国胤, 刘群, 等. 正态云模型研究回顾与展望[J]. 计算机学报, 2018, 41(3): 724-744. Yang Jie, Wang Guoyin, Liu Qun, et al.Retrospect and prospect of research of normal cloud model[J]. Chinese Journal of Computers, 2018, 41(3): 724-744. [14] 范松丽, 艾芊, 贺兴. 基于机会约束规划的虚拟电厂调度风险分析[J]. 中国电机工程学报, 2015, 35(16): 4025-4034. Fan Songli, Ai Qian, He Xing.Risk analysis on dispatch of virtual power plant based on chance constrained programming[J]. Proceedings of the CSEE, 2015, 35(16): 4025-4034. [15] 夏澍, 葛晓琳, 季海华, 等. 基于机会约束规划的电力电量平衡分析[J]. 电力系统保护与控制, 2017, 45(18): 102-107. Xia Shu, Ge Xiaolin, Ji Haihua, et al.Power supply-demand balancing analysis based on chance-constrained programming[J]. Power System Protection and Control, 2017, 45(18): 102-107. [16] 禤培正, 朱继忠, 谢平平. 含风电电力系统鲁棒调度保守度的多目标优化方法[J]. 南方电网技术, 2017, 11(2): 8-15. Xuan Peizheng, Zhu Jizhong, Xie Pingping.Multi-objective optimization method of robust dispatch conservativeness of power system with wind power[J]. Southern Power System Technology, 2017, 11(2): 8-15. [17] 税月, 刘俊勇, 高红均, 等. 考虑风电不确定性的电热综合系统分布鲁棒协调优化调度模型[J]. 中国电机工程学报, 2018, 38(24): 125-137, 340. Shui Yue, Liu Junyong, Gao Hongjun, et al.A distributionally robust coordinated dispatch model for integrated electricity and heating systems considering uncertainty of wind power[J]. Proceedings of the CSEE, 2018, 38(24): 125-137, 340. [18] Duan Chao, Jiang Lin, Fang Wangliang, et al.Data-driven affinely adjustable distributionally robust unit commitment[J]. IEEE Transactions on Power Systems, 2018, 33(2): 1385-1398. [19] Chen Yuwei, Guo Qinglai, Sun Hongbin, et al.A distributionally robust optimization model for unit commitment based on Kullback-Leibler divergence[J]. IEEE Transactions on Power Systems, 2018, 33(5): 5147-5160. [20] 潘伟, 黄民翔. 基于矩不确定分布鲁棒优化的发电自调度算法[J]. 机电工程, 2017, 34(6): 643-647. Pan Wei, Huang Minxiang.Distributional robust optimization under moment uncertainty for self-scheduling[J]. Journal of Mechanical & Electrical Engineering, 2017, 34(6): 643-647. [21] Xiong Peng, Jirutitijaroen P, Singh C.A distributionally robust optimization model for unit commitment considering uncertain wind power generation[J]. IEEE Transactions on Power Systems, 2017, 32(1): 39-49. [22] 康重庆, 夏清, 徐玮. 电力系统不确定性分析[M]. 北京: 科学出版社, 2011. [23] 夏鹏, 刘文颖, 蔡万通, 等. 基于风电离散化概率序列的机会约束规划优化调度方法[J]. 电工技术学报, 2018, 33(21): 173-183. Xia Peng, Liu Wenying, Cai Wantong, et al.Optimal scheduling method of chance constrained programming based on discrete wind power probability sequences[J]. Transactions of China Electrotechnical Society, 2018, 33(21): 173-183. [24] 赵波, 汪湘晋, 张雪松, 等. 考虑需求侧响应及不确定性的微电网双层优化配置方法[J]. 电工技术学报, 2018, 33(14): 3284-3295. Zhao Bo, Wang Xiangjin, Zhang Xuesong, et al.Two-layer method of microgrid optimal sizing considering demand-side response and uncertainties[J]. Transactions of China Electrotechnical Society, 2018, 33(14): 3284-3295. [25] 张涛, 王成, 王凌云, 等. 偏差电量考核机制下含DG的售电公司多目标优化调度模型[J]. 电工技术学报, 2019, 34(15): 3265-3274. Zhang Tao, Wang Cheng, Wang Lingyun, et al.Multi-objective optimal dispatching model of electricity retailers with distributed generator under energy deviation penalty[J]. Transactions of China Electrotechnical Society, 2019, 34(15): 3265-3274. [26] 南思博, 李庚银, 周明, 等. 智能小区可削减柔性负荷实时需求响应策略[J]. 电力系统保护与控制, 2019, 47(10): 42-50. Nan Sibo, Li Gengyin, Zhou Ming, et al.Real-time demand response of curtailable flexible load in smart residential community[J]. Power System Protection and Control, 2019, 47(10): 42-50.