Degradation Analysis of Transient Thermal Characteristics of IGBT Module under Different Working Conditions
Liu Xiangxiang, Li Zhigang, Yao Fang
The State Key Laboratory of Reliability and Intelligentization of Electrical Equipment Cosponsored by the Ministry of Hebei University of Technology Tianjin 300130 China
Abstract:In this paper, the thermal degradation characteristics of insulated gate bipolar transistor (IGBT) under different operating modes are studied. The module dynamic test experiment is designed to monitor the degradation data in real time, and the degradation of thermal resistance is measured at intervals by the transient double-interface method. Based on the experimental results, the relationship between the aging conditions and the degradation of each layer of materials is analyzed from the aspect of failure mechanism. At the same time, the finite element analysis method is used as an auxiliary method to verify the validity of the experimental measurements, and the IGBT thermal model under different boundary conditions can be obtained more intuitively. The results show that the effect of temperature excursion has a higher impact on module degradation than that of mean temperature and on-off frequency. The effect of higher frequency on the module mainly occurs inside the chip, while the effect of temperature excursion on the module mainly occurs at the packaging level.
刘向向, 李志刚, 姚芳. 不同工作模式下的IGBT模块瞬态热特性退化分析[J]. 电工技术学报, 2019, 34(zk2): 509-517.
Liu Xiangxiang, Li Zhigang, Yao Fang. Degradation Analysis of Transient Thermal Characteristics of IGBT Module under Different Working Conditions. Transactions of China Electrotechnical Society, 2019, 34(zk2): 509-517.
[1] Oh H, Han B, McCluskey P, et al. Physics-of-failure, condition monitoring, and prognostics of insulated gate bipolar transistor modules: a review[J]. IEEE Transactions on Power Electronics, 2015, 30(5): 2413-2426. [2] Dusmez S, Ali S H, Heydarzadeh M, et al.Aging precursor identification and lifetime estimation for thermally aged discrete package silicon power switches[J]. IEEE Transactions on Industry Appli- cations, 2017, 53(1): 251-260. [3] Ye Xuerong, Chen Cen, Wang Yixing, et al.Online condition monitoring of power MOSFET gate oxide degradation based on Miller platform voltage[J]. IEEE Transactions on Power Electronics, 2017, 32(6): 4776-4784. [4] Pedersen K B, Kristensen P K, Popok V, et al.Degradation assessment in IGBT modules using four-point probing approach[J]. IEEE Transactions on Power Electronics, 2015, 30(5): 2405-2412. [5] 方化潮, 郑利兵, 王春雷, 等. IGBT模块栅极电压米勒平台时延与结温的关系[J]. 电工技术学报, 2016, 31(4): 28-35. Fang Huachao, Zheng Libing, Wang Chunlei, et al.The relationship between junction temperature and time delay of gate voltage miller plateau of IGBT module[J]. Transactions of China Electrotechnical Society, 2016, 31(4): 28-35. [6] 刘盛福, 常垚, 李武华, 等. 压接式IGBT模块的动态特性测试平台设计及杂散参数提取[J]. 电工技术学报, 2017, 32(22): 50-57. Liu Shengfu, Chang Yao, Li Wuhua, et al.Dynamic switching characteristics test platform design and parasitic parameter extraction of press-pack IGBT modules[J]. Transactions of China Electrotechnical Society, 2017, 32(22): 50-57. [7] 何湘宁, 吴岩松, 罗皓泽, 等. 基于IGBT离线测试平台的功率逆变器损耗准在线建模方法[J]. 电工技术学报, 2014, 29(6): 1-6. He Xiangning, Wu Yansong, Luo Haoze, et al.Online power inverter loss modeling method based on IGBT offline test platform[J]. Transactions of China Elec- trotechnical Society, 2014, 29(6): 1-6. [8] 周雒维, 周生奇, 孙鹏菊. 基于杂散参数辨识的IGBT模块内部缺陷诊断方法[J]. 电工技术学报, 2012, 27(5): 156-163. Zhou Luowei, Zhou Shengqi, Sun Pengju.Internal fault diagnosis of IGBT module based on spurious parameter identification[J]. Transactions of China Electrotechnical Society, 2012, 27(5): 156-163. [9] Chen Ming, Hu An, Wang Bo, et al.Test of IGBT junction-case steady state thermal resistance and experimental analysis[C]//International Conference on Intelligent System Design and Engineering Application, Changsha, China, 2010, 2: 557-560. [10] Schweitzer D, Pape H, Liu Chen, et al.Transient dual interface measurement—a new JEDEC standard for the measurement of the junction-to-case thermal resistance[C]//Semiconductor Thermal Measurement and Management Symposium (SEMI-THERM), San Jose, CA, USA, 2011: 222-229. [11] Qiu Zhijie, Zhang Jin, Meng Jinle, et al.Temperature effects on the transient measurement of the junction- to-case thermal resistance of IGBTs[C]//2014 IEEE Conference and Expo Transportation Electrification Asia-Pacific (ITEC Asia-Pacific), Beijing, China, 2014: 1-4. [12] Schweitzer D, Pape H, Kutscherauer R, et al.How to evaluate transient dual interface measurements of the Rth-JC of power semiconductor packages[C]//2009 25th Annual IEEE Semiconductor Thermal Measure- ment and Management Symposium, San Jose, CA, USA, 2009: 172-179. [13] Luo Yafei, Kajita Yasushi, Hatakeyama Tomoyuki.Thermal transient test based thermal structure function analysis of IGBT package[C]//International Conference on Electronics Packaging (ICEP), Toyama, Japan, 2014: 596-599. [14] Wu Rui, Iannuzzo F, Wang H, et al.Fast and accurate Icepak-PSpice co-simulation of IGBTs under short- circuit with an advanced PSpice model[C]//7th IET International Conference on Power Electronics, Machines and Drives (PEMD 2014), Manchester, UK, 2014: 1-5. [15] Kociniewski T, Khatir Z.Mechanical and thermal stresses characterization maps on cross-sections of forward biased electronic power device[C]//2015 IEEE International Reliability Physics Symposium, Monterey, CA, USA, 2015, DOI: 10.1109/IRPS.2015. 7112800. [16] Li Jue, Myllykoski P, Paulasto-Krckel M.Study on thermomechanical reliability of power modules and thermal grease pump-out mechanism[C]//2015 16th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems (EuroSimE), Budapest, Hungary, 2015: 1-6. [17] Liao Liling, Hung Tuanyu, Liu Chunkai, et al.Study on configuration design of interconnection in high power module[C]//2014 15th International Conference on Thermal, Mechanical and Mulit-Physics Simu- lation and Experiments in Microelectronics and Microsystems (EuroSimE), Ghent, Belgiu, 2014: 1-4. [18] 毛鹏, 谢少军, 许泽刚. IGBT模块的开关暂态模型及损耗分析[J]. 中国电机工程学报, 2010, 30(15): 40-47. Mao Peng, Xie Shaojun, Xu Zegang.Switching transient model and loss analysis of IGBT module[J]. Proceedings of the CSEE, 2010, 30(15): 40-47. [19] 杜毅, 廖美英. 逆变器中IGBT模块的损耗计算及其散热系统设计[J]. 电气传动自动化, 2011, 33(1): 42-46. Du Yi, Liao Meiying.Loss calculation of IGBT module in inverter and design of heat dissipation system[J]. Journal of Chinese Electrical Engineering Science, 2011, 33(1): 42-46. [20] 杨俊伟, 史旺旺. 交流电流直接控制的单相PWM整流器非线性控制策略[J]. 电力系统保护与控制, 2015, 43(20): 114-118. Yang Junwei, Shi Wangwang.Nonlinear control strategy for single-phase PWM rectifier with AC current direct control[J]. Power System Protection and Control, 2015, 43(20): 114-118. [21] 苏匀, 李少华, 王秀丽, 等. 基于PWM交交变频器的分频风电系统研究[J]. 电力系统保护与控制, 2015, 43(13): 86-91. Su Jun, Li Shaohua, Wang Xiuli, et al.Study on frequency division wind power system based on PWM cycle converter[J]. Power System Protection and Control, 2015, 43(13): 86-91. [22] 刘建涛, 王治华, 王珂. 不同结构电压源换流器损耗对比分析[J]. 电力系统保护与控制, 2013, 41(6): 105-110. Liu Jiantao, Wang Zhihua, Wang Ke.Comparison and analysis of loss of converter with different structure voltage source[J]. Power System Protection and Control, 2013, 41(6): 105-110. [23] Ji Bing, Song Xueguan, Edward Sciberras, et al.Multi objective design optimization of IGBT power modules considering power cycling and thermal cycling[J]. IEEE Transactions on Power Electronics, 2015, 30(5): 2493-2504. [24] 唐云宇, 林燎源, 马皓. 一种改进的并联IGBT模块瞬态电热模型[J]. 电工技术学报, 2017, 32(12): 88-96. Tang Yunyu, Lin Liaoyuan, Ma Hao.An improved transient electro-thermal model for paralleled IGBT modules[J]. Transactions of China Electrotechnical Society, 2017, 32(12): 88-96. [25] 姚芳, 胡洋, 李铮, 等. 基于结温监测的风电IGBT热安全性和寿命耗损研究[J]. 电工技术学报, 2018, 33(9): 2024-2033. Yao Fang, Hu Yang, Li Zheng, et al.Study on thermal safety and lifetime consumption of IGBT in wind power converters based on junction temperature monitoring[J]. Transactions of China Electrotechnical Society, 2018, 33(9): 2024-2033.