A Load Current-Sharing Control Strategy for DC Microgrid Converters Based on Active Voltage Disturbance
Tong Ziang1, Wu Jianwen1, Ma Suliang1, Jiang Yuan2, Luo Xiaowu1
1. School of Automation Science and Electrical Engineering Beihang University Beijing 100191 China; 2. School of Automation and Electrical Engineering University of Science and Technology Beijing Beijing 100083 China
Abstract:With the rapid development of new energy power generation technology, load current-sharing control and bus voltage control of the multiple parallel DC converters have attracted wide attention. Most of the load current-sharing methods depend on the communication between DC converters or system level communication, which have low reliability and bring about bus voltage dropping. In this paper, a load current-sharing control strategy based on active voltage disturbance is proposed. The method does not need communication. The DC converter obtains load information according to the output state change before and after the disturbance. Accordingly, the load current-sharing is achieved and the bus voltage is compensated to the rated value. By establishing the simulation and experimental platforms, the load current-sharing effect before and after the load changing is analyzed. The method uses active disturbance, which has little influence on power quality and is controllable. The results verify the effectiveness of the current sharing strategy.
佟子昂, 武建文, 马速良, 蒋原, 罗晓武. 一种基于主动电压扰动的直流微网负载均流控制策略[J]. 电工技术学报, 2019, 34(24): 5199-5208.
Tong Ziang, Wu Jianwen, Ma Suliang, Jiang Yuan, Luo Xiaowu. A Load Current-Sharing Control Strategy for DC Microgrid Converters Based on Active Voltage Disturbance. Transactions of China Electrotechnical Society, 2019, 34(24): 5199-5208.
[1] 吴卫民, 何远彬, 耿攀, 等. 直流微网研究中的关键技术[J]. 电工技术学报, 2012, 27(1): 98-106, 113. Wu Weimin, He Yuanbin, Geng Pan, et al.Key technologies for DC micro-grids[J]. Transactions of China Electrotechnical Society, 2012, 27(1): 98-106, 113. [2] Dragicevic T, Guerrero J M, Vasquez J C, et al.Supervisory control of an adaptive-droop regulated DC microgrid with battery management capability[J]. IEEE Transactions on Power Electronics, 2014, 9(2): 695-706. [3] 刘健, 魏昊焜, 张志华, 等. 未来配电网的主要形态——基于储能的低压直流微电网[J]. 电力系统保护与控制, 2018, 46(18): 11-16. Liu Jian, Wei Haokun, Zhang Zhihua, et al.Future architecture of power distribution network— low-voltage direct current micro-grids based on energy storage[J]. Power System Protection and Control, 2018, 46(18): 11-16. [4] 谢少军, 肖华锋, 罗运虎. 直流楼宇技术初议[J]. 电工技术学报, 2012, 27(1): 107-113. Xie Shaojun, Xiao Huafeng, Luo Yunhu.On DC- building technology[J]. Transactions of China Elec- trotechnical Society, 2012, 27(1): 107-113. [5] 庄逢甘. 未来航天与新能源的战略结合——空间太阳能电站[J]. 中国航天, 2008(7): 36-39. Zhuang Fenggan.Strategic combination of astro- nautics and new energy-solar power satellite[J]. Aerospace China, 2008(7): 36-39. [6] Sarmad Majeed Malik, Ai Xin, Sun Yingyun, et al.Voltage and frequency control strategies of hybrid AC/DC microgrid: a review[J]. IET Generation, Transmission & Distribution, 2017, 11(2): 303-313. [7] 杨志淳, 刘开培, 乐健, 等. 孤岛运行微电网中模糊PID下垂控制器设计[J]. 电力系统自动化, 2013, 37(12): 19-23. Yang Zhichun, Liu Kaipei, Le Jian, et al.Design of fuzzy droop controllers for islanded microgrids[J]. Automation of Electric Power Systems, 2013, 37(12): 19-23. [8] Gu Yunjie, Li Wuhua, He Xiangning.Frequency- coordinating virtual impedance for autonomous power management of DC microgrid[J]. IEEE Transactions on Power Electronics, 2015, 30(4): 2328-2337. [9] 黄桂根, 王腾飞, 王慧馨, 等. 基于低带宽通信直流微网变换器自适应下垂均流技术研究[J]. 机电工程, 2016, 33(5): 620-624. Huang Guigen, Wang Tengfei, Wang Huixin, et al.Research of adaptive droop current-sharing technique for DC micro-grid converters based on low- bandwidth communication[J]. Journal of Mechanical & Electrical Engineering, 2016, 33(5): 620-624. [10] Kahrobaeian A, Ibrahim Mohamed Y A. Networked- based hybrid distributed power sharing and control for islanded microgrid systems[J]. IEEE Transactions on Power Electronics, 2015, 30(2): 603-617. [11] Nutkani I U, Loh P C, Wang Peng, et al.Autonomous droop scheme with reduced generation cost[J]. IEEE Transactions on Industrial Electronics, 2014, 61(12): 6803-6811. [12] Augustine Sijo, Mahesh K Mishra, Lakshminarasamma N.Adaptive droop control strategy for load sharing and circulating current minimization in low-voltage standalone DC microgrid[J]. IEEE Transactions on Sustainable Energy, 2015, 6(1): 132-141. [13] 赵中田, 王泓钊, 李伟, 等. 低压直流微电网母线电压控制策略[J]. 山东理工大学学报: 自然科学版, 2018, 32(1): 69-74. Zhao Zhongtian, Wang Hongzhao, Li Wei, et al.Bus voltage control strategy for low voltage DC microgrid[J]. Journal of Shandong University of Technology: Natural Science Edition, 2018, 32(1): 69-74. [14] 王天宏, 李琦, 陈维荣. 负载均流的自适应虚拟阻抗下垂控制方法[J]. 西南交通大学学报, 2017, 52(5): 1020-1028. Wang Tianhong, Li Qi, Cheng Weirong.Adaptive virtual impedance droop control method in load sharing[J]. Journal of Southwest Jiaotong University, 2017, 52(5): 1020-1028. [15] 杨海柱, 岳刚伟, 范书豪. 直流微网自适应动态下垂控制策略研究[J]. 电源学报, 2019, 17(2): 101-108. Yang Haizhu, Yue Gangwei, Fan Shuhao.Research on adaptive dynamic pusher control strategy of DC micro-network[J]. Journal of Power Supply, 2019, 17(2): 101-108. [16] 刘子文, 苗世洪, 范志华, 等. 基于自适应下垂特性的孤立直流微电网功率精确分配与电压无偏差控制策略[J]. 电工技术学报, 2019, 34(4): 795-806. Liu Ziwen, Miao Shihong, Fan Zhihua, et al.Accurate power allocation and zero steady-state error voltage control of the islanding DC microgird based on adaptive droop characteristics[J]. Transactions of China Electrotechnical Society, 2019, 34(4): 795-806. [17] 张东, 卓放, 师洪涛, 等. 基于下垂系数步长自适应的下垂控制策略[J]. 电力系统自动化, 2014, 38(24): 20-25. Zhang Dong, Zhuo Fang, Shi Hongtao, et al.Droop control strategy based on droop coefficient step size adaptive control[J]. Autormation of Electric Power Systems, 2014, 38(24): 20-25. [18] 蔡久青, 陈昌松, 段善旭, 等. 模块化不间断电源自适应均流控制技术[J]. 电工技术学报, 2017, 32(24): 153-159. Cai Jiuqing, Chen Changsong, Duan Shanxu, et al.Adaptive current-sharing control technique for modular uninterruptible power supply[J]. Transa- ctions of China Electrotechnical Society, 2017, 32(24): 153-159. [19] 杨捷, 金新民, 吴学智, 等. 直流微网中混合储能系统的无互联通信网络功率分配策略[J]. 电工技术学报, 2017, 32(10): 135-144. Yang Jie, Jin Xinmin, Wu Xuezhi, et al.A wireless power sharing control strategy for hybrid energy storage systems in dc microgrids[J]. Transactions of China Electrotechnical Society, 2017, 32(10): 135-144. [20] 胡金杭, 施永, 周晨, 等. 微电网中的线路阻抗测量方法研究[J]. 电测与仪表, 2016, 53(18): 28-34. Hu Jinhang, Shi Yong, Zhou Chen, et al.Line impedance measurement method for micro-grid[J]. Electrical Measurement & Instrumentation, 2016, 53(18): 28-34. [21] 刘琛, 赵晋斌, 王闪闪, 等. 基于单脉冲注入的直流微电网线路阻抗检测[J]. 电工技术学报, 2018, 33(11): 2584-2591. Liu Chen, Zhao Jinbin, Wang Shanshan, et al.A line impedance identification based on single pulse injection in DC microgrid[J]. Transactions of China Electrotechnical Society, 2018, 33(11): 2584-2591. [22] 全国电压电流等级和频率标准化技术委员会. GB/T 12325-2008 电能质量供电电压偏差[S]. 北京: 中国标准出版社, 2008. [23] 冯寅, 尹忠东. 直流配电网电能质量的综合评估[J]. 上海电气技术, 2016, 9(2): 1-5. Feng Yin, Yin Zhongdong.Comprehensive evaluation of power quality in DC distribution grid[J]. Shanghai Electrical Technology, 2016, 9(2): 1-5.