Mechanism Study of Subsynchronous Resonance Based on Open-Loop Modal Information
Wang Yang1, Du Wenjuan2, Wang Haifeng1, 2
1. State Key Laboratory of Alternate Electric Power Systems with New Energy Resources North China Electric Power University Beijing 102206 China; 2. College of Electrical Engineering Sichuan University Chengdu 610065 China
摘要 汽轮发电机-串补输电系统的次同步谐振是次同步振荡研究领域的经典问题,开环模式分析法和复转矩系数法是其典型的机理分析方法。该文在现有开环模式分析法的基础上,进一步考虑了开环振荡模式之间的距离这一影响因素,提出基于机械、电气两个开环子系统的开环模式信息(开环振荡模式及其之间的距离和留数)来评估闭环模式的方法。基于IEEE SSR FBM: ①揭示了轴系扭振的开环模式耦合条件——当开环扭振模式和开环串补振荡模式靠近时,相应的闭环振荡模式将会朝相反方向远离开环振荡模式,偏移程度与开环振荡模式间的距离和留数有关;②揭示了感应发电机效应与电气子系统开环振荡模式的关联;③揭示了附加电力系统稳定器(PSS)次同步谐振阻尼控制器通过影响开环模式信息从而提高轴系扭振稳定性的机理。
Abstract:Sub-synchronous resonance of turbine-generator integrated series-compensated power system is a classic problem in the field of sub-synchronous oscillation research. The typical analysis methods include open-loop modal analysis method and complex torque coefficient method. To improve the existing open-loop modal analysis method, this paper further considered the influencing factors of the distance between open-loop modes, and proposed a method to evaluate the closed-loop modes by using the open-loop modal information of the interconnected open-loop subsystems. Based on IEEE SSR FBM, firstly, the mechanism of torsional vibration was revealed as the open-loop modal coupling, i.e., open-loop modes of two subsystems are close to each other. And the coupling between two open-loop modes may cause closed-loop modal repulsion, which is related to the distance and residues between two open-loop modes. Then, the relationship between induction generator effect and open-loop mode of the electrical subsystem was studied. Finally, the mechanism of the additional power system stabilizer sub-synchronous resonance damping controller to improve the stability of the torsional vibration of the shafting system by affecting the open loop modal information was revealed.
王洋, 杜文娟, 王海风. 基于开环子系统模式信息的次同步谐振机理研究[J]. 电工技术学报, 2019, 34(24): 5209-5220.
Wang Yang, Du Wenjuan, Wang Haifeng. Mechanism Study of Subsynchronous Resonance Based on Open-Loop Modal Information. Transactions of China Electrotechnical Society, 2019, 34(24): 5209-5220.
[1] 谢小荣, 王路平, 贺静波, 等. 电力系统次同步谐振/振荡的形态分析[J]. 电网技术, 2017, 41(4): 1043-1049. Xie Xiaorong, Wang Luping, He Jingbo, et al.Analysis of subsynchronous resonance/oscillation types in power systems[J]. Power System Technology, 2017, 41(4): 1043-1049. [2] 程时杰, 曹一家, 江全元. 电力系统次同步振荡的理论与方法[M]. 北京: 科学出版社, 2009. [3] Padiyar K R.Analysis of subsynchronous resonance in power systems[M]. Boston: Springer, 1999. [4] Kunder P.Power system stability and control[M]. New York: Mcgraw-Hill Inc, 1994. [5] 罗超, 肖湘宁, 张剑, 等. 并联型有源次同步振荡抑制器阻尼控制策略优化设计[J]. 电工技术学报, 2016, 31(21): 150-158. Luo Chao, Xiao Xiangning, Zhang Jian, et al.The optimal damping control strategy design of parallel active subsynchronous oscillation suppressor[J]. Transactions of China Electrotechnical Society, 2016, 31(21): 150-158. [6] 岑炳成, 刘涤尘, 董飞飞, 等. 抑制次同步振荡的SVC非线性控制方法[J]. 电工技术学报, 2016, 31(4): 129-135. Cen Bingcheng, Liu Dichen, Dong Feifei, et al.Nonlinear control method of static var compensator for damping subsynchronous oscillation[J]. Transa- ctions of China Electrotechnical Society, 2016, 31(4): 129-135. [7] 李宽, 王军, 赵斌超, 等. 风火捆绑经HVDC送电引起轴系扭振研究[J]. 电工技术学报, 2017, 32(6): 115-122. Li Kuan, Wang Jun, Zhao Binchao, et al.Shafting vibration research of wind power and thermal power bundle supply through HVDC[J]. Transactions of China Electrotechnical Society, 2017, 32(6): 115-122. [8] 江桂芬, 孙海顺, 陈霞, 等. 宁夏多直流外送系统SSO特性分析及次同步阻尼控制器设计[J]. 电工技术学报, 2017, 32(增刊1): 30-38. Jiang Guifen, Sun Haishun, Chen Xia, et al.Sub- synchronous oscillation characteristics analysis and SSDC design of ningxia multiple DC transmissions system[J]. Transactions of China Electrotechnical Society, 2017, 32(S1): 30-38. [9] Canay I M.A novel approach to the torsional interaction and electrical damping of the synchronous machine part I: theory[J]. IEEE Transactions on Power Apparatus and Systems, 1982, 101(10): 3630-3638. [10] Canay I M.A novel approach to the torsional interaction and electrical damping of the synchronous machine part II: application to an arbitrary network[J]. IEEE Transactions on Power Apparatus and Systems, 1982, 101(10): 3639-3647. [11] Tabesh A, Iravani R.On the application of the complex torque coefficients method to the analysis of torsional dynamics[J]. IEEE Transactions on Energy Conversion, 2005, 20(2): 268-275. [12] 赵书强, 李忍, 高本锋, 等. 适用于多源系统次同步振荡分析的图形化建模方法[J]. 电工技术学报, 2017, 32(14): 184-193. Zhao Shuqiang, Li Ren, Gao Benfeng, et al.A graphical modeling method applied for multi-sources system subsynchronous oscillation analysis[J]. Transactions of China Electrotechnical Society, 2017, 32(14): 184-193. [13] Bowler C E J, Ewart D N, Concordia C. Self excited torsional frequency oscillations with series capaci- tors[J]. IEEE Transactions on Power Apparatus and Systems, 1973, 92(5): 1688-1695. [14] Dobson I, Zhang J, Greene S, et al.Is strong modal resonance a precursor to power system oscilla- tions?[J]. IEEE Transactions on Circuits and Systems, 2001, 48(3): 340-349. [15] Seyranian A P.Sensitivity analysis of multiple eigenvalues[J]. Journal of Structural Mechanics, 1993, 21(2): 261-284. [16] Du Wenjuan, Wang Yang, Wang Haifeng, et al.Concept of modal repulsion for examining the sub-synchronous oscillations in power systems[J]. IEEE Transactions on Power Systems, 2018, 33(4): 4614-4624. [17] Porter B, Crossley R, Lpscutoff W V.Modal control: theory and applications[M]. London: Taylor and Francis, 1972. [18] 倪以信, 陈寿松, 张宝霖. 动态电力系统的理论和分析[M]. 北京: 清华大学出版社, 2002. [19] 胡云花, 赵书强, 马燕峰, 等. 电力系统低频振荡和次同步振荡统一模型阻尼分析[J]. 电力自动化设备, 2005, 25(7): 6-11. Hu Yunhua, Zhao Shuqiang, Ma Yanfeng, et al.Damping analysis of unified LFO & SSO model in power system[J]. Electric Power Automation Equipment, 2005, 25(7): 6-11. [20] Li S, Haskew T A, Swatloski R P, et al.Optimal and direct-current vector control of direct-driven PMSG wind turbines[J]. IEEE Transactions on Power Electronics, 2012, 27(5): 2325-2337.