A Single-Stage Buck-Boost Inverter with Non-Electrolytic Capacitor
Wang Liqiao1, Li Zhanyi1, Liu Le1, Huang Haiwen2
1. Key Laboratory of Power Electronics for Energy Conservation and Drive Control of Hebei Province Yanshan University Qinhuangdao 066004 China; 2. State Grid Jibei Electric Power Company Supply Branch of Funing District Qinhuangdao 066300 China
Abstract:Since the voltage source inverter used in the medium and low-power photovoltaic power generation systems cannot operate in Buck-Boost operation and the high-capacity electrolytic capacitors are required in DC side, a novel non-electrolytic capacitor single-stage Buck-Boost inverter is proposed. This inverter has buck-boost capability and strong resistance to low-frequency pulsation on the input side, which helps to reduce the value of the input side filter capacitor, thereby realizing the entire system without electrolytic capacitor. The inverter has the advantages of low cost, long life, high reliability, and simple short circuit and open circuit protection, which is suitable for the medium and low-power photovoltaic power generation systems. In this paper, the operation principle of the inverter is introduced, its mathematical model is deduced, and the parameter design is performed. Based on the theoretical analysis, the simulation and experimental verification are performed. The results prove the correctness of the theoretical analysis.
王立乔, 李占一, 刘乐, 黄海文. 一种无电解电容单级Buck-Boost逆变器[J]. 电工技术学报, 2019, 34(20): 4295-4305.
Wang Liqiao, Li Zhanyi, Liu Le, Huang Haiwen. A Single-Stage Buck-Boost Inverter with Non-Electrolytic Capacitor. Transactions of China Electrotechnical Society, 2019, 34(20): 4295-4305.
[1] 李响, 范建业, 曹丽璐, 等. 大型光伏电站并网适应性分析[J]. 电力系统保护与控制, 2018, 46(8): 164-169. Li Xiang, Fan Jianye, Cao Lilu, et al.Analysis on the adaptability of large-scale grid-connected PV station[J]. Power System Protection & Control, 2018, 46(8): 164-169. [2] Chen Wenjie, Duan Yiming, Guo Lei, et al.Modeling and prediction of radiated emission from solar cell in a photovoltaic generation system[J]. IEEE Journal of Photovoltaics, 2016, 6(2): 540-545. [3] 汪飞, 钟元旭, 李林, 等. 基于集成三端口变换器的无电解电容LED驱动[J]. 电工技术学报, 2016, 31(23): 189-198. Wang Fei, Zhong Yuanxu, Li Lin, et al.An electrolytic capacitor-less LED driver based on an integrated three-port converter[J]. Transactions of China Electrotechnical Society, 2016, 31(23): 189-198. [4] 程诗恩. 一种AC/DC DCM反激变换器输出电容在线监测方法[J]. 电气技术, 2018, 19(4): 37-41. Cheng Shien.The online monitoring method of output capacitor’s C and ESR for AC/DC DCM flyback converter[J]. Electrical Engineering, 2018, 19(4): 37-41. [5] 王立乔, 祝百年, 孙孝峰. 一种单级隔离型Sepic逆变器[J]. 电工技术学报, 2016, 31(18): 75-82. Wang Liqiao, Zhu Bainian, Sun Xiaofeng.A single-stage isolated Sepic inverter[J]. Transactions of China Electrotechnical Society, 2016, 31(18): 75-82. [6] Tang Yu, Dong Xianmei, He Yaohua.Active Buck-Boost inverter[J]. IEEE Transactions on Power Electronics, 2014, 61(9): 4691-4697. [7] 江加辉, 陈道炼, 佘敏. 准单级隔离Buck-Boost型多输入逆变器[J]. 电工技术学报, 2018, 33(18): 147-158. Jiang Jiahui, Chen Daolian, She Min.Quasi single stage isolated Buck-Boost mode multi-input inver- ter[J]. Transactions of China Electrotechnical Society, 2018, 33(18): 147-158. [8] 朴政国, 户永杰, 郭裕祺.一种基于并联谐振的高频隔离型并网逆变器[J]. 电工技术学报, 2018, 33(2): 322-330. Piao Zhengguo, Hu Yongjie, Guo Yuqi.High- frequency isolated grid-connected inverter based on parallel resonance[J]. Transactions of China Electro- technical Society, 2018, 33(2): 322-330. [9] Keyhani H, Toliyat H A.Single-stage multistring PV inverter with an isolated high-frequency link and soft-switching operation[J]. IEEE Transactions on Power Electronics, 2014, 29(8): 3919-3929. [10] Jung H S, Yoo J M, Sul S K, et al.Parallel operation of inverters with isolated DC-link for minimizing sharing inductor[J]. IEEE Transactions on Industry Applications, 2017, 53(5): 4450-4459. [11] Reddi N K, Ramteke M R, Suryawanshi H M, et al.An isolated multi-input ZCS DC-DC front-end- converter based multilevel inverter for the integration of renewable energy sources[J]. IEEE Transactions on Industry Applications, 2018, 54(1): 494-504. [12] 胡存刚, 姚培, 张云雷, 等. 高效非隔离单相并网MOSFET逆变器拓扑及控制策略[J]. 电工技术学报, 2016, 31(13): 82-91. Hu Cungang, Yao Pei, Zhang Yunlei, et al.Topology and control strategy for high-efficient non-isolated single-phase grid-connected MOSFET inverter[J]. Transactions of China Electrotechnical Society, 2016, 31(13): 82-91. [13] 郭小强, 贾晓瑜. 非隔离型级联H5光伏逆变器共模漏电流特性分析[J]. 电工技术学报, 2018, 33(2): 361-369. Guo Xiaoqiang, Jia Xiaoyu.Analysis of common mode leakage current for transformerless cascaded H5 PV inverter[J]. Transactions of China Electro- technical Society, 2018, 33(2): 361-369. [14] 彭方正, 房绪鹏, 顾斌, 等. Z源变换器[J]. 电工技术学报, 2004, 19(2): 47-51. Peng Fangzheng, Fang Xupeng, Gu Bin, et al.Z-source converter[J]. Transactions of China Electro- technical Society, 2004, 19(2): 47-51. [15] 周玉斐, 黄文新, 赵健伍, 等. 一种高升压比的Z源逆变器[J]. 电工技术学报, 2013, 28(9): 239-246. Zhou Yufei, Huang Wenxin, Zhao Jianwu, et al.A high gain Z-source inverter[J]. Transactions of China Electrotechnical Society, 2013, 28(9): 239-246. [16] 王立乔, 王欣, 仇雷. 一种新型单级非隔离双Cuk逆变器[J]. 中国电机工程学报, 2014, 34(6): 846-854. Wang Liqiao, Wang Xin, Qiu Lei.A novel single- stage non-isolated dual Cuk inverter[J]. Proceedings of the CSEE, 2014, 34(6): 846-854. [17] 胡茂, 秦岭, 陈瑞祥, 等. 基于单极倍频SPWM调制的单相Buck-Boost 集成式升压逆变器研究[J]. 中国电机工程学报, 2017, 37(13): 3863-3873. Hu Mao, Qin Ling, Chen Ruixiang, et al.Research on single phase Buck-Boost integrated step-up inverter with monopole frequency doubling SPWM modu- lation[J]. Proceedings of the CSEE, 2017, 37(13): 3863-3873. [18] 徐德鸿. 电力电子系统建模及控制[M]. 北京: 机械工业出版社, 2006. [19] 黄如海, 谢少军. 基于比例谐振调节器的逆变器双环控制策略研究[J]. 电工技术学报, 2012, 27(2): 77-81. Huang Ruhai, Xie Shaojun.Double-loop digital control strategy based on proportional-resonant controller[J]. Transactions of China Electrotechnical Society, 2012, 27(2): 77-81.