A Topological-Transformation Multi-Resonant DC Converter with Smooth Mode Switching Characteristic
Wang Yifeng1, Chen Mengying1, Tian Bailing1, Yang Liang2, Li Zhanchun3
1. School of Electrical and Information Engineering Tianjin University Tianjin 300072 China; 2. National Electric Power Dispatching and Control Center State Grid Corporation of China Beijing 100031 China; 3. State Grid Tianjin Electric Power Corporation Chengxi District Supply Company Tianjin 300113 China
Abstract:In this paper, a topological transformation multi-resonant soft-switching DC-DC converter and its transient smoothing control method are proposed. By introducing auxiliary switches, the converter can flexibly adjust its structure among three operating modes to achieve a fast and wide range regulation of voltage gain in a narrow frequency range, and obtain the advantage of high efficient conversion in a wide range of voltage gain. At the same time, for the problem of large voltage fluctuations in the mode switching process, the proposed transient control method adopts the way of the driving signal gradient control to achieve smooth switching between the modes and effectively suppress the voltage fluctuation during the process of switching. Finally, the proposed converter topology is verified by an experimental prototype. It is demonstrated that the converter can maintain the stability of the output voltage in a wide input voltage range (80~600V), achieve a smooth switching, and always hold a higher conversion efficiency (97.2%~98.2%). Meanwhile, by adopting the transient control method, the transient voltage fluctuations during the two switching processes are reduced from 38.4V to 10.8V and 35.2V to 8.4V respectively, achieving a smooth mode transition.
王议锋, 陈梦颖, 田栢苓, 杨良, 李占纯. 一种具有平滑模式切换特征的拓扑变换型多谐振直流变换器[J]. 电工技术学报, 2019, 34(20): 4283-4294.
Wang Yifeng, Chen Mengying, Tian Bailing, Yang Liang, Li Zhanchun. A Topological-Transformation Multi-Resonant DC Converter with Smooth Mode Switching Characteristic. Transactions of China Electrotechnical Society, 2019, 34(20): 4283-4294.
[1] 陈实, 邰能灵, 范春菊, 等. 考虑风力发电的配电网弱馈线路自适应电流保护[J]. 电工技术学报, 2017, 32(3): 65-73. Chen Shi, Tai Nengling, Fan Chunju, et al.An adaptive current protection for weak-infeed distri- bution lines with wind generation[J]. Transactions of China Electrotechnical Society, 2017, 32(3): 65-73. [2] 尹明, 王成山, 葛旭波, 等. 中德风电发展的比较与分析[J]. 电工技术学报, 2010, 25(9): 157-162. Yin Ming, Wang Chengshan, Ge Xubo, et al.Comparison and analysis of wind power development between China and Germany[J]. Transactions of China Electrotechnical Society, 2010, 25(9): 157-162. [3] 刘世林, 孙海顺, 顾明磊, 等. 一种新型风力发电机与飞轮储能联合系统的并网运行控制[J]. 电工技术学报, 2012, 27(4): 248-254. Liu Shilin, Sun Haishun, Gu Minglei, et al.Novel structure and operation control of a flywheel energy storage system associated to wind generator connected to power grid[J]. Transactions of China Electrotechnical Society, 2012, 27(4): 248-254. [4] 许颇, 张兴, 张崇巍, 等. 采用Z源变换器的小型风力并网逆变系统[J]. 电工技术学报, 2008, 23(4): 93-97. Xu Po, Zhang Xing, Zhang Chongwei, et al.Small wind turbine grid-connected systems based on Z-source inverter[J]. Transactions of China Electro- technical Society, 2008, 23(4): 93-97. [5] 杨良, 王议锋, 孟准. 一种基于储能回路的小型并网风力发电系统[J]. 电工技术学报, 2016, 31(2): 120-130. Liang Yiang, Wang Yifeng, Meng Zhun.A small- scale grid-connected wind generation system based on a storage branch[J]. Transactions of China Electrotechnical Society, 2016, 31(2): 120-130. [6] 许颇, 张兴, 张崇巍, 等. 基于BOOST变换器的小型风力机并网逆变控制系统设计[J]. 太阳能学报, 2007, 28(3): 274-279. Xu Po, Zhang Xing, Zhang Chongwei, et al.Grid connected inverter based on Boost converter control system design of small wind machine[J]. Acta Energiae Solaris Sinica, 2007, 28(3): 274-279. [7] 王银涛, 何山, 王维庆, 等. 基于改进的RMC-分散式小型风电场并网仿真研究[J]. 电力系统保护与控制, 2017, 45(8): 53-58. Wang Yintao, He Shan, Wang Weiqing, et al.Simulation study of distributive small wind farms integration based on an improved RMC[J]. Power System Protection & Control, 2017, 45(8): 53-58. [8] 靳晓光, 万兰若, 徐军, 等. 基于磁放大器的半桥LLC变换器输入电压范围扩展方法[J]. 电工技术学报, 2018, 33(21): 5026-5035. Jin Xiaoguang, Wan Lanruo, Xu Jun, et al.Input- voltage extension method of half-bridge LLC converter based on magamp[J]. Transactions of China Electrotechnical Society, 2018, 33(21): 5026-5035. [9] 徐恒山, 尹忠东, 黄永章. 考虑最大输出电压和效率的LLC谐振变流器的设计方法[J]. 电工技术学报, 2018, 33(2): 331-341. Xu Hengshan, Yin Zhongdong, Huang Yongzhang.Design method of LLC resonant converter con- sidering maximum output voltage and efficiency[J]. Transactions of China Electrotechnical Society, 2018, 33(2): 331-341. [10] 孙孝峰, 申彦峰, 李午英, 等. 交错并联双向Buck/Boost集成LLC谐振型三端口直流变换器[J]. 电工技术学报, 2016, 31(14): 165-175. Sun Xiaofeng, Shen Yanfeng, Li Wuying, et al.Interleaved bidirectional Buck/Boost and LLC integrated three-port DC-DC converter[J]. Transa- ctions of China Electrotechnical Society, 2016, 31(14): 165-175. [11] 李浩昱, 李振伟, 赵雷, 等. 宽输入LLC谐振变换器多电平控制策略[J]. 电工技术学报, 2017, 32(4): 48-57. Li Haoyu, Li Zhenwei, Zhao Lei, et al.Multi-level control strategy of wide input LLC resonant converter[J]. Transactions of China Electrotechnical Society, 2017, 32(4): 48-57. [12] Fang Zhijian, Cai Tao, Duan Shanxu, et al.Optimal design methodology for LLC resonant converter in battery charging applications based on time-weighted average efficiency[J]. IEEE Transactions on Power Electronics, 2015, 30(10): 5469-5483. [13] Kim J H, Kim C E, Kim J K, et al.Analysis on load-adaptive phase-shift control for high efficiency full-bridge LLC resonant converter under light-load conditions[J]. IEEE Transactions on Power Elec- tronics, 2016, 31(7): 4942-4955. [14] Feng W, Lee F C, Mattavelli P.Optimal trajectory control of burst mode for LLC resonant converter[J]. IEEE Transactions on Power Electronics, 2012, 28(1): 457-466. [15] 韩富强, 王议锋, 杨良, 等. 一种输出并联型CLTCL多谐振软开关直流变换器[J]. 电工技术学报, 2018, 33(20): 4780-4789. Han Fuqiang, Wang Yifeng, Yang Liang, et al.A parallel-output CLTCL multi-element resonant soft- switching DC-DC converter[J]. Transactions of China Electrotechnical Society, 2018, 33(20): 4780-4789. [16] 胡海兵, 王万宝, 孙文进, 等. LLC谐振变换器效率优化设计[J]. 中国电机工程学报, 2013, 33(18): 48-56. Hu Haibing, Wang Wanbao, Sun Wenjin, et al.Optimal efficiency design of LLC resonant con- verters[J]. Proceedings of the CSEE, 2013, 33(18): 48-56. [17] Shahzad M I, Iqbal S, Taib S.A wide output range HB-2LLC resonant converter with hybrid rectifier for PEV battery charging[J]. IEEE Transactions on Transportation Electrification, 2017, 3(2): 520-531. [18] Chen Wei, Rong Ping, Lu Zhengyu.Snubberless bidirectional DC-DC converter with new CLLC resonant tank featuring minimized switching loss[J]. IEEE Transactions on Industrial Electronics, 2010, 57(9): 3075-3086. [19] Jung J H, Kim H S, Ryu M H, et al.Design methodology of bidirectional CLLC resonant con- verter for high-frequency isolation of DC distribution systems[J]. IEEE Transactions on Power Electronics, 2012, 28(4): 1741-1755. [20] Wu Hongfei, Jin Xiong, Hu Haibing, et al.Multi- element resonant converters with a notch filter on secondary side[J]. IEEE Transactions on Power Electronics, 2016, 31(6): 3999-4004. [21] Hu Haibing, Fang Xiang, Chen Frank, et al.A modified high-efficiency LLC converter with two transformers for wide input-voltage range appli- cations[J]. IEEE Transactions on Power Electronics, 2013, 28(4): 1946-1960. [22] Liang Zhigang, Guo Rong, Li Jun, et al.A high- efficiency PV module-integrated DC/DC converter for PV energy harvest in FREEDM systems[J]. IEEE Transactions on Power Electronics, 2011, 26(3): 897-909.