Research of Discharge in Micro-Gap Based on Atomic Force Microscope
Sun Zhi1,2, Fu Linqing1,3, Gao Xin1, Han Bai1, Sun Weifeng1
1. State Key Laboratory Breeding Base of Dielectrics Engineering Harbin University of Science and Technology Harbin 150080 China; 2. Institute for Nanotechnology University of Waterloo Waterloo N2L3Gl Canada; 3. Zaozhuang Power Supply Company of State Grid Shangdong Electric Power Company Zaozhuang 277000 China
Abstract:Micro-discharge plasma has been widely used in many fields, but the Thomson discharge theory can’t reasonably explain mesoscopic-scale air discharge phenomenon. In order to further explore the micro-gap air discharge characteristics and to determine the effect of field emission on micro-scale air discharge, the precision displacement plate and atomic force microscope (AFM) were used to construct the pin-plate electrode structure which can realize the micrometer distance control. The phenomena and mechanism of micro-gap discharge were investigated when the DC voltage was applied in atmosphere environment. The results show that the micro-gap discharge mechanism is very different from that between the long gap. When the gap is about 15 μm, non-uniform electric field discharge generates continuous glow discharge or intermittent spark discharge. When the gap is less than 2 μm, there is no glow discharge occurs. Fowler-Nordheim formula describes the same phenomena that breakdown voltage does not change with the gap distance, denoting that is the field emission mechanism. Cathode field emission discharge makes the negative breakdown voltage to be lower than the positive gap breakdown voltage in the same gap. The precise locating and in situ morphological characterization of pin-plate electrode discharging in micro-regions were achieved by AFM.
孙志, 付琳清, 高鑫, 韩柏, 孙伟峰. 基于原子力显微镜的微间隙空气放电研究[J]. 电工技术学报, 2018, 33(23): 5616-5624.
Sun Zhi, Fu Linqing, Gao Xin, Han Bai, Sun Weifeng. Research of Discharge in Micro-Gap Based on Atomic Force Microscope. Transactions of China Electrotechnical Society, 2018, 33(23): 5616-5624.
[1] 成永红, 孟国栋, 董承业. 微纳尺度电气击穿特性和放电规律研究综述[J]. 电工技术学报, 2017, 32(2): 13-23. Cheng Yonghong, Meng Guodong, Dong Chengye.Review on the breakdown characteristics and discharge behaviors at the micro & nano scale[J]. Transactions of China Electrotechnical Society, 2017, 32(2): 13-23. [2] 欧阳吉庭, 张宇, 秦宇. 微放电及其应用[J]. 高电压技术, 2016, 42(3): 673-684. Ouyang Jiting, Zhang Yu, Qin Yu.Micro-discharge and its applications[J]. High Voltage Engineering, 2016, 42(3): 673-684. [3] 李帆, 焦俊凯, 罗海云, 等. 辉光放电等离子体对气压变化的响应特性[J]. 电工技术学报, 2016, 31(24): 54-61. Li Fan, Jiao Junkai, Luo Haiyun, et al.Response regularity between glow discharge plasma and static pressure change[J]. Transactions of China Electrotechnical Society, 2016, 31(24): 54-61. [4] 詹花茂, 刘波, 颜廷利, 等. 操作冲击下空间电荷对间隙放电的影响[J]. 电工技术学报, 2014, 29(2): 212-218. Zhan Huamao, Liu Bo, Yan Tingli, et al.Influence of space charge on air gap discharge under switching impulse[J]. Transactions of China Electrotechnical Society, 2014, 29(2): 212-218. [5] 荣命哲, 杨飞, 吴翊, 等. 直流断路器电弧研究的新进展[J]. 电工技术学报, 2014, 29(1): 1-9. Rong Mingzhe, Yang Fei, Wu Yi, et al.New developments in switching arc research in DC circuit breaker[J]. Transactions of China Electrotechnical Society, 2014, 29(1): 1-9. [6] Groot W A D, Webster J R, Felnhofer D, et al. Review of device and reliability physics of dielectrics in electrostatically driven MEMS devices[J]. IEEE Transactions on Device & Materials Reliability, 2009, 9(2): 190-202. [7] 孟国栋, 成永红, 酉小广, 等. 微机电系统微米间隙的预击穿和击穿特性研究[J]. 西安交通大学学报, 2012, 46(8): 106-110. Meng Guodong, Cheng Yonghong, You Xiaoguang, et al.Prebreakdown and breakdown characteristics of micrometer gap in micro-electro-mechanical system device[J]. Journal of Xi’an Jiaotong University, 2012, 46(8): 106-110. [8] Lee R T, Chung H H, Chiou Y C.Arc erosion behaviour of silver electric contacts in a single arc discharge across a static gap[J]. IEE Proceedings of Science, Measurement and Technology, 2001, 148(1): 8-14. [9] Dhariwal R S, Torres J M, Desmulliez M P Y. Electric field breakdown at micrometre separations in air and nitrogen at atmospheric pressure[J]. IEE Proceedings of Science, Measurement and Technology, 2000, 147(5): 261-265. [10] Schwaederlé L, Kulsreshath M K, Overzet L J, et al.Breakdown study of DC silicon micro-discharge devices[J]. Journal of Physics D: Applied Physics, 2012, 45(6): 065201. [11] Semnani A, Venkattraman A, Alexeenko A A, et al.Pre-breakdown evaluation of gas discharge mechanisms in microgaps[J]. Applied Physics Letters, 2013, 102(17): 1366-2557. [12] 何旺龄, 何俊佳, 张锦, 等. 同轴电极的负电晕特里切尔脉冲特性分析[J]. 电工技术学报, 2016, 31(11): 211-218. He Wangling, He Junjia, Zhang Jin, et al.Characteristics of negative corona Trichel pulses in a coaxial electrode system[J]. Transactions of China Electrotechnical Society, 2016, 31(11): 211-218. [13] Torres J, Dhariwal R S, King P C.Electric field breakdown at micrometre separations in various media[C]//IET Eleventh International Symposium on High Voltage Engineering, London, UK, 1999: 201-204. [14] Radmilović-Radjenović M, Matejčik Š, Klas M, et al.The role of the field emission effect in direct-current argon discharges for the gaps ranging from 1 to 100 µm[J]. Journal of Physics D: Applied Physics, 2013, 46(1): 015302. [15] Ilic D, Stankovic K, Vujisic M, et al.Avalanche mechanism of vacuum breakdown[J]. Radiation Effects and Defects in Solids, 2011, 166(2): 137-149. [16] Carazzetti P, Renaud P, Shea H R.Experimental study of electrical breakdown in MEMS devices with micrometer scale gaps[J]. Proceedings of SPIE-the International Society for Optical Engineering, 2008, 6884(2): 199-216. [17] Radmilović-Radjenović M, Matejčik Š, Klas M, et al.The breakdown phenomena in micrometer scale directcurrent gas discharges[J]. Plasma Chemistry and Plasma Processing, 2014, 34(1): 55-64. [18] Scanning probe microscopy training notebook[Z]. Version 3.Scanning probe microscopy training notebook[Z]. Version 3.0 Digital Instruments Veeco Metrology Group, 2000. [19] 姚聪伟, 马恒驰, 常正实, 等. 大气压介质阻挡辉光放电脉冲的阴极位降区特性及其影响因素的数值仿真[J]. 物理学报, 2017, 66(2): 257-268. Yao Congwei, Ma Hengchi, Chang Zhengshi, et al.Simulations of the cathode falling characteristics and its influence factors in atmospheric pressure[J]. Acta Physica Sinica, 2017, 66(2): 257-268. [20] 付洋洋, 罗海云, 邹晓兵, 等. 棒-板电极下缩比气隙辉光放电相似性的仿真研究[J]. 物理学报, 2014, 63(9): 95206. Fu Yangyang, Luo Haiyun, Zou Xiaobing, et al.Simulation on similarity law of glow discharge in scale-down gaps of rod-plane electrode configuration[J]. Acta Physica Sinica, 2014, 63(9): 95206. [21] 徐学基, 诸定昌. 气体放电物理[M]. 第1版. 上海: 复旦大学出版社, 1996. [22] 陈季丹, 刘子玉. 电介质物理学[M]. 北京: 机械工业出版社, 1982. [23] 张喜波, 苏建仓, 孙旭, 等. 场致发射电流对高气压间隙击穿场强的影响[J]. 现代应用物理, 2015, 6(1): 42-45. Zhang Xibo, Su Jiancang, Sun Xu, et al.Effect of field-emission current on breakdown field strength of high-pressure gas gap[J]. Modern Applied Physics, 2015, 6(1): 42-45. [24] 张兆祥, 侯士敏, 赵兴钰, 等. 单壁碳纳米管的场发射特性研究[J]. 物理学报, 2002, 51(2): 434-438. Zhang Zhaoxiang, Hou Shimin, Zhao Xingyu, et al.A study on field emission patterns of single-walled carbon nanotubes[J]. Acta Physica Sinica, 2002, 51(2): 434-438. [25] Slade P G, Taylor E D.Electrical breakdown in atmospheric air between closely spaced (0.2μm-40μm) electrical contacts[J]. IEEE Transactions on Components and Packaging Technologies, 2002, 25(3): 390-396. [26] 曾葆青, 杨中海. 场致发射体的局域功函数研究[J]. 真空科学与技术学报, 1999(3): 201-206. Zeng Baoqing, Yang Zhonghai.Studies of local work function of a field emitter[J].Vacuum Science and Technology, 1999(3): 201-206. [27] 孙志, 王暄, 韩柏, 等. 聚酰亚胺薄膜表面电荷的开尔文力显微镜研究[J]. 中国电机工程学报, 2014, 34(12): 1957-1964. Sun Zhi, Wang Xuan, Han Bai, et al.Research on surface charges of polyimide films by the Kelvin force microscope[J]. Proceedings of the CSEE, 2014, 34(12): 1957-1964.