A Current Hysteresis Control Method for Brushless DC Motor in Multi-State with Commutation Torque Ripple Reduction
Wang Peixia1, 2, Jiang Weidong1, Wang Jinping1, Huang Hui1, Liao Yuming1, Ma Weicheng1, 2
1. School of Electrical Engineering & Automation Hefei University of Technology Hefei 230009 China; 2. The Department of Information Engineering Hefei University of Technology (Xuancheng Campus)Xuancheng 242000 China
Abstract:Nowadays, the studies about the brushless DC motor (BLDCM) control are mainly focused on motor state. However, it may also work in generator state. The control of BLDCM torque is generally achieved by controlling the motor current. The current hysteresis control (CHC) method can control the motor current directly, so the better torque control performance can be obtained. A CHC for BLDCM in motor and generator state is presented. CHC can not only complete commutation successfully but also reduce commutation torque ripple. Moreover, a novel transition control method based on the background of CHC with fast response is proposed to carry out commutation and the transition processes simultaneously.
王培侠, 姜卫东, 王金平, 黄辉, 廖玉茗, 马炜程. 基于电流滞环控制的无刷直流电机多状态换相转矩脉动抑制方法[J]. 电工技术学报, 2018, 33(22): 5261-5272.
Wang Peixia, Jiang Weidong, Wang Jinping, Huang Hui, Liao Yuming, Ma Weicheng. A Current Hysteresis Control Method for Brushless DC Motor in Multi-State with Commutation Torque Ripple Reduction. Transactions of China Electrotechnical Society, 2018, 33(22): 5261-5272.
[1] Brekken T K A, Hapke H M, Stillinger C, et al. Machines and drives comparison for low-power renewable energy and oscillating applications[J]. IEEE Transactions on Energy Conversion, 2010, 25(4): 1162-1170. [2] Huang X, Goodman A, Gerada C, et al.A single sided matrix converter drive for a brushless DC motor in aerospace applications[J]. IEEE Transactions on Industry Applications, 2012, 59(9): 3442-3552. [3] 夏长亮, 李正军, 杨荣, 等. 基于自抗扰控制器的无刷直流电机控制系统[J]. 中国电机工程学报, 2005, 25(2): 82-86. Xia Changliang, Li Zhengjun, Yang Rong, et al.Control system of brushless DC motor based on active-disturbance rejection controller[J]. Pro- ceedings of the CSEE, 2005, 25(2): 82-86. [4] Carlson R, Lajoie-Mazenc M, Fagundes J C D S. Analysis of torque ripple due to phase commutation in brushless dc machines[J]. IEEE Transactions on Industry Applications, 1992, 28(3): 632-638. [5] Fang Jiancheng, Li Haitao, Han Bangcheng.Torque ripple reduction in BLDC torque motor with non- ideal back EMF[J]. IEEE Transactions on Power Electronics, 2012, 27(11): 4630-4637. [6] Lu Haifeng, Zhang Lei, Qu Wenlong.A new torque control method for torque ripple minimization of BLDC motors with un-ideal back EMF[J]. IEEE Transactions on Power Electronics, 2008, 23(2): 950-958. [7] 刘计龙, 肖飞, 沈洋, 等. 永磁同步电机无位置传感器控制技术研究综述[J]. 电工技术学报, 2017, 32(16): 76-88. Liu Jilong, Xiao Fei, Shen Yang, et al.Position sensorless control technology of permanent-magnet synchronous motor-a review[J]. Transactions of China Electrotechnical Society, 2017, 32(16): 76-88. [8] 李孟秋, 王龙. 一种改进的永磁同步电机低速无位置传感器控制策略[J]. 电工技术学报, 2018, 33(9): 1967-1974. Li Mengqiu, Wang Long.An improved low speed sensorless control strategy for permanent magnet synchronous motor[J]. Transactions of China Elec- trotechnical Society, 2018, 33(9): 1967-1974. [9] 王鲜芳, 杜志勇, 王向东. 基于LS-SVM和滑模变结构的无刷直流电动机混合控制[J]. 电力系统保护与控制, 2011, 39(2): 70-79. Wang Xianfang, Du Zhiyong, Wang Xiangdong.Hybrid control of brushless DC motor based on LS- SVM and sliding mode variable structure[J]. Power System Protection and Control, 2011, 39(2): 70-79. [10] Xia Changliang, Xiao Youwen, Chen Wei, et al.Three effective vectors-based current control scheme for four-switch three-phase trapezoidal brushless DC motor[J]. Institution of Engineering and Technology, 2013, 7(7): 566-574. [11] Lin Yongkai, Lai Yen-shin.Pulse width modulation technique for BLDCM drives to reduce CTR without calculation of commutation time[J]. IEEE Transa- ctions on Industrial Electronics, 2011, 47(4): 1786-17931. [12] Jiang Weidong, Huang Hui, Wang Jinping, et al.Commutation analysis of brushless DC motor and reducing commutation torque ripple in the two-phase stationary frame[J]. IEEE Transactions on Power Electronics, 2017, 32(6): 4675-4682. [13] Zhang Xing, Wang Yangjun, Yu Changzhou, et al.Hysteresis model predictive control for high-power grid-connected inverters with output LCL filter[J]. IEEE Transactions on Industrial Electronics, 2016, 63(1): 246-256. [14] 彭也伦, 黄守道, 张文娟, 等. 一种基于电流滞环控制的模块化多电平变流器调制策略[J]. 电工技术学报, 2016, 31(17): 94-101. Peng Yelun, Huang Shoudao, Zhang Wenjuan, et al.A modulation strategy based on current hysteresis control for modular multilevel converter[J]. Transa- ctions of China Electrotechnical Society, 2016, 31(17): 94-101. [15] 毛惠丰, 孔德鹏, 陈增禄, 等. H桥电压型逆变器三电平滞环控制[J]. 中国电机工程学报, 2015, 35(15): 3904-3911. Mao Huifeng, Kong Depeng, Chen Zenglu, et al.A new three-level hysteresis current controlled single- phase h-bridge voltage source inverters[J]. Pro- ceedings of the CSEE, 2015, 35(15): 3904-3911. [16] 王云飞, 杨耕. 通用变频器—感应电机系统的电机能耗型制动控制方法[J]. 电工技术学报, 2006, 21(1): 12-18. Wang Yunfei, Yang Geng.Power loss braking method for general inverter-fed induction motor drives[J]. Transactions of China Electrotechnical Society, 2006, 21(1): 12-18. [17] 胡庆波, 郑继文, 吕征宇. 混合动力中无刷直流电机反接制动PWM调制方式的研究[J]. 中国电机工程学报, 2007, 27(30): 87-91. Hu Qingbo, Zheng Jiwen, Lü Zhengyu.Study on PWM strategy for braking of brushless DC motor in hybrid electric vehicle[J]. Proceedings of the CSEE, 2007, 27(30): 87-91. [18] Walker A M, Lamperth M U, Wilkins S.On friction braking demand with regenerative braking[C]//20th Annual Brake Colloquium and Exhibition, London, UK, 2002: 2581-2587. [19] Liu Yong, Zhu Z Q, David Howe.Commutation- torque ripple-minimization in direct-torque-controlled pm brushless DC drives[J]. IEEE Transaction on Industry Applications, 2007, 43(4): 1012-1021. [20] 姜卫东, 黄辉, 王培侠, 等. 基于图解法的无刷直流电机抑制换相转矩脉动的方法[J]. 中国电机工程学报, 2016, 36(15): 4258-4265. Jiang Weidong, Huang Hui, Wang Peixia, et al.A control method to suppress the commutation torque ripple of brushless DC motors based on the graphical method[J]. Proceedings of the CSEE, 2016, 36(15): 4258-4265.