Abstract:A method to identify unknown partial discharge (PD) types based on improved support vector data description (SVDD) algorithm and Mahalanobis distance is presented in this paper. And a dual threshold method based on Otsu criterion is proposed to determine the types of PD samples. Firstly, PD samples were collected from artificial defects models and extracted feature vectors to constitute sample sets. Secondly, the SVDD algorithm was used to solve the center and the radius of the hypersphere of the training PD samples. Then, the double threshold R1 and R2 were set according to the Otsu criterion, and the feature space was divided into different regions. Finally, according to the classical criterion and Mahalanobis distance, the types of PD of the test samples were determined. The experimental results show that the accuracy of recognition obtained by the method proposed in this paper is high, which verifies the feasibility of the method. Compared with the traditional SVDD algorithm and the Euclidean distance method, the proposed method has a higher accuracy for the classification of PD samples.
[1] 汪可, 廖瑞金, 王季宇, 等. 局部放电UHF脉冲的时频特征提取与聚类分析[J]. 电工技术学报, 2015, 30(2): 211-219. Wang Ke, Liao Ruijin, Wang Jiyu, et al.Time frequency features extraction and clustering analysis of partial discharge UHF pulses[J]. Transactions of China Electrotechnical Society, 2015, 30(2): 211-219. [2] 周沙, 景亮. 基于矩特征与概率神经网络的局部放电模式识别[J]. 电力系统保护与控制, 2016, 44(3): 98-102. Zhou Sha, Jing Liang.Pattern recognition of partial discharge based on moment features and probabilistic neural network[J]. Power System Protection and Control, 2016, 44(3): 98-102. [3] 朱永利, 贾亚飞, 王刘旺, 等. 基于改进变分模态分解和Hilbert变换的变压器局部放电信号特征提取及分类[J]. 电工技术学报, 2017, 32(9): 221-235. Zhu Yongli, Jia Yafei, Wang Liuwang, et al.Feature extraction and classification on partial discharge signals of power transformers based on improved variational mode decomposition and hilbert transform[J]. Transactions of China Electrotechnical Society, 2017, 32(9): 221-235. [4] 梁帅伟, 廖瑞金, 杨丽君, 等. 油纸绝缘老化的超宽频带局部放电信号时频域特性逐步判别分析[J]. 电网技术, 2007, 31(22): 38-43. Liang Shuaiwei, Liao Ruijin, Yang Lijun, et al.Stepwise discriminant analysis on time-domain and frequency-domain characteristics of ultra-wideband partial discharge signals for oil-paper insulation ageing[J]. Power System Technology, 2007, 31(22): 38-43. [5] 苑津莎, 尚海昆. 基于主成分分析和概率神经网络的变压器局部放电模式识别[J]. 电力自动化设备, 2013, 33(6): 27-31. Yuan Jinsha, Shang Haikun.Pattern recognition based on principal component analysis and probabilistic neural networks for partial discharge of power transformer[J]. Electric Power Automation Equipment, 2013, 33(6): 27-31. [6] 王瑜, 苑津莎, 尚海昆, 等. 组合核支持向量机在放电模式识别中的优化策略[J]. 电工技术学报, 2015, 30(2): 229-236. Wang Yu, Yuan Jinsha, Shang Haikun, et al.Optimization strategy research on combined-kernel support vector machine for partial discharge pattern recognition[J]. Transactions of China Electrotechnical Society, 2015, 30(2): 229-236. [7] 杨志超, 范立新, 杨成顺, 等. 基于GK模糊聚类和LS-SVC的GIS局部放电类型识别[J]. 电力系统保护与控制, 2014, 42(20): 38-45. Yang Zhichao, Fan Lixin, Yang Chengshun, et al.Identification of partial discharge in gas insulated switchgears based on GK fuzzy clustering & LS-SVM[J]. Power System Protection and Control, 2014, 42(20): 38-45. [8] Tax D M J, Duin R P W. Support vector data description[J]. Machine Learning, 2004, 54(1): 45-66. [9] 陈利, 蒋维东, 杨礼. 支持向量数据描述法在变压器故障预警中的应用[J]. 西南民族大学学报(自然科学版), 2008, 34(3): 568-571. Chen Li, Jiang Weidong, Yang Li.The application of support vector data description for the fault prewarning of Power transformer[J]. Journal of Southwest University for Nationalities (Natural Science Edition), 2008, 34(3): 568-571. [10] 唐炬, 林俊亦, 卓然, 等. 基于支持向量数据描述的局部放电类型识别[J]. 高电压技术, 2013, 39(5): 1046-1053. Tang Ju, Lin Junyi, Zhuo Ran, et al.Partial discharge type recognition based on support data vector description[J]. High Voltage Engineering, 2013, 39(5): 1046-1053. [11] Maesschalck R D, Jouan-Rimbaud D, Massart D L.The mahalanobis distance[J]. Chemometrics & Intelligent Laboratory Systems, 2000, 50(1): 1-18. [12] 梅江元. 基于马氏距离的度量学习算法研究及应用[D]. 黑龙江: 哈尔滨工业大学, 2016. [13] 王力敏. 基于小波分析和SVDD的工程机械故障诊断研究[D]. 湖南: 湖南大学, 2012. [14] 王力敏, 金敏. 球边界偏移判别结合空间分布聚类的故障诊断[J]. 电子测量与仪器学报, 2012, 26(10): 877-882. Wang Limin, Jin Min.Sphere boundary offset discrimination and space distribution clustering for fault diagnosis[J]. Journal of Electronic Measurement and Instrument, 2012, 26(10): 877-882. [15] Ohtsu N.A threshold selection method from gray-level histograms[J]. IEEE Transactions on Systems Man & Cybernetics, 2007, 9(1): 62-66. [16] 黄建新, 刘怀, 黄伟. 基于遗传算法的图像分割阈值选取[J]. 南京师范大学学报(工程技术版), 2007, 7(1): 14-17. Huang Jianxin, Liu Huai, Huang Wei.A threshold selection method of image segmentation based on genetic algorithms[J]. Journal of Nanjing Normal University (Engineering and Technology Edition), 2007, 7(1): 14-17. [17] 张敏龙, 王涛, 王旭平, 等. 带故障样本的弹性双阈值SVDD在线故障诊断算法及其应用[J]. 振动工程学报, 2016, 29(3): 555-560. Zhang Minlong, Wang Tao, Wang Xuping, et al.Online fault diagnosis algorithm based on variable dual-threshold SVDD with negative samples and its application[J]. Journal of Vibration Engineering, 2016, 29(3): 555-560. [18] 陈攀, 姚陈果, 廖瑞金, 等. 分频段能量谱及马氏聚类算法在开关柜局部放电模式识别中的应用[J]. 高电压技术, 2015, 41(10): 3332-3341. Chen Pan, Yao Chenguo, Liao Ruijin, et al.Application of signals separated band energy spectrum and mahalanobis clustering algorithm for switchgear partial discharge pattern recognition[J]. High Voltage Engineering, 2015, 41(10): 3332-3341. [19] 张蒙, 朱永利, 张宁, 等. 基于变分模态分解和多尺度排列熵的变压器局部放电信号特征提取[J]. 华北电力大学学报(自然科学版), 2016, 43(6): 31-37. Zhang Meng, Zhu Yongli, Zhang Ning, et al.Feature extraction of transformer partial discharge signals based on varitional mode decomposition and multi-scale permutation entropy[J]. Journal of North China Electric Power University (Natural Science Edition), 2016, 43(6): 31-37. [20] 贾亚飞, 朱永利, 王刘旺, 等. 基于VMD和多尺度熵的变压器内绝缘局部放电信号特征提取及分类[J]. 电工技术学报, 2016, 31(19): 208-217. Jia Yafei, Zhu Yongli, Wang Liuwang, et al.Feature extraction and classification on partial discharge signals of power transformer based on VMD and multiscale entropy[J]. Transactions of China Electrotechnical Society, 2016, 31(19): 208-217.