Abstract:To assess the effects of loop and package parasitic parameters on silicon carbide MOSFET switching transient characterization, switching transient equivalent circuit model was firstly established under all the parasitic parameters, and the turn-on and turn-off transient process was analyzed in detail. Then, considering the negative bias voltage and the nonlinearity of device parasitic capacitance, simplified analytic expression of switching transient electric overstress was deduced. Furthermore, the relationship between oscillation frequency and parasitic parameters was also discussed, based on the small signal equivalent circuit. Eventually, the experimental and calculation results show that the analysis model is feasible and can reflect the influence of parasitic parameters on silicon carbide MOSFET switching characteristics.
柯俊吉, 赵志斌, 谢宗奎, 徐鹏, 崔翔. 考虑寄生参数影响的碳化硅MOSFET开关暂态分析模型[J]. 电工技术学报, 2018, 33(8): 1762-1774.
Ke Junji, Zhao Zhibin, Xie Zongkui, Xu Peng, Cui Xiang. Analytical Switching Transient Model for Silicon Carbide MOSFET under the Influence of Parasitic Parameters. Transactions of China Electrotechnical Society, 2018, 33(8): 1762-1774.
[1] 盛况, 郭清, 张军明, 等. 碳化硅电力电子器件在电力系统的应用展望[J]. 中国电机工程学报, 2012, 32(30): 1-7. Sheng Kuang, Guo Qing, Zhang Junming, et al.Development and prospect of SiC power devices in power grid[J]. Proceedings of the CSEE, 2012, 32(30): 1-7. [2] 赵斌, 秦海鸿, 马策宇, 等. SiC功率器件的开关特性探究[J]. 电工电能新技术, 2014, 33(3): 18-22. Zhao Bin, Qin Haihong, Ma Ceyu, et al.Exploration of switching characteristics of SiC-based power devices[J]. Advanced Technology of Electrical Engineering and Energy, 2014, 33(3): 18-22. [3] 谢立军. SiC逆变器仿真研究及实验装置研制[D]. 北京: 中国电力科学研究院, 2015. [4] 王学梅. 宽禁带碳化硅功率器件在电动汽车中的研究与应用[J]. 中国电机工程学报, 2014, 34(3): 371-379. Wang Xuemei.Researches and applications of wide bandgap SiC power devices in electric vehicles[J]. Proceedings of the CSEE, 2014, 34(3): 371-379. [5] 黄润华, 陶永洪, 柏松, 等. 1700V碳化硅MOSFET设计[J]. 固体电子学研究与进展, 2014, 34(6): 510-513. Huang Runhua, Tao Yonghong, Bai Song, et al.Design of 1700V SiC MOSFET[J]. Research & Progress of SSE, 2014, 34(6): 510-513. [6] Miao Z, Mao Y, Ngo K, et al.Package influence on the simulated performance of 1.2kV SiC modules[C]// IEEE 3rd Workshop on Wide Bandgap Power Devices and Applications, Blacksburg, USA, 2015: 306-311. [7] 徐国林, 朱夏飞, 刘先正, 等. 基于PSpice的碳化硅MOSFET的建模与仿真[J]. 智能电网, 2015, 3(6): 507-511. Xu Guolin, Zhu Xiafei, Liu Xianzheng, et al.Modeling and simulation of SiC MOSFET based on PSpice[J]. Smart Grid, 2015, 3(6): 507-511. [8] 孙凯, 陆珏晶, 吴红飞, 等. 碳化硅MOSFET的变温度参数建模[J]. 中国电机工程学报, 2013, 33(3): 37-43. Sun Kai, Lu Juejing, Wu Hongfei, et al.Modeling of SiC MOSFET with temperature dependent para- meters[J]. Proceedings of the CSEE, 2013, 33(3): 37-43. [9] 祁锋, 徐隆亚, 王江波, 等. 一种为碳化硅MOSFET设计的高温驱动电路[J]. 电工技术学报, 2015, 30(23): 24-31. Qi Feng, Xu Longya, Wang Jiangbo, et al.A high temperature gate drive circuit for SiCMOSFET[J]. Transactions of China Electrotechnical Society, 2015, 30(23): 24-31 [10] 梁美, 郑琼林, 可翀, 等. SiC MOSFET、Si CoolMOS和IGBT的特性对比及其在DAB变换器中的应用[J]. 电工技术学报, 2015, 30(12): 41-50. Liang Mei, Zheng Qionglin, Ke Chong, et al.Perfor- mance comparison of SiC MOSFET, Si CoolMOS and IGBT for DAB converter[J]. Transactions of China Electrotechnical Society, 2015, 30(12): 41-50. [11] 范春丽, 余成龙, 龙觉敏, 等. 寄生参数对SiC MOSFET开关特性的影响[J]. 上海电机学院学报, 2015, 18(4): 191-200. Fan Chunli, Yu Chenglong, Long Juemin, et al.Simulation of parasitic parameters influence on SiC MOSFET switching performance[J]. Journal of Shanghai Dianji University, 2015, 18(4): 191-200. [12] Li H, Munk-Nielsen S.Detail study of SiC MOSFET switching characteristics[C]//IEEE International Symposium on Power Electronics for Distributed Generation Systems, Galway, Ireland, 2014: 1-5. [13] Xiao Y, Shah H, Chow T P, et al.Analytical modeling and experimental evaluation of interconnect parasitic inductance on MOSFET switching characteristics[C]//Nineteenth Annual IEEE Applied Power Electronics Conference and Exposition, California, 2004: 516-521. [14] 巴腾飞, 李艳, 梁美. 寄生参数对SiC MOSFET栅源极电压影响的研究[J]. 电工技术学报, 2016, 31(13): 64-73. Ba Tengfei, Li Yan, Liang Mei.The effect of parasitic parameters on gate-source voltage of SiC MOSFET[J]. Transactions of China Electrotechnical Society, 2016, 31(13): 64-73. [15] Kimoto T, Cooper J A.Fundamentals of silicon carbide technology[M]. Singapore: John Wiley & Sons Inc, 2014. [16] Noppakunkajorn J, Han D, Sarlioglu B.Analysis of high-speed PCB with SiC devices by investigating turn-off overvoltage and interconnection inductance influence[J]. IEEE Transactions on Transportation Electrification, 2015, 1(2): 118-125. [17] Chen K, Zhao Z, Yuan L, et al.The impact of nonlinear junction capacitance on switching transient and its modeling for SiC MOSFET[J]. IEEE Transa- ctions on Electronic Devices, 2015, 62(2): 333-338. [18] CREE, “C2M0080120D-Silicon Carbide Power MOSFET,” C2M0080120D datasheet[Z]. 2014. [19] CREE, “C4D20120D-Silicon Carbide Power MOSFET,” C4D20120D datasheet[Z]. 2016. [20] Wang J, Chung S H, Li T H.Characterization and experimental assessment of the effects of parasitic elements on the MOSFET switching performance[J]. IEEE Transactions on Power Electronics, 2013, 28(1): 573-590. [21] Lawson K, Bayne S B.Transient performance of SiC MOSFETs as a function of temperature[J]. IEEE Transactions on Dielectrics & Electrical Insulation, 2011, 18(4): 1124-1129. [22] Ho C N M, Canales F, Coccia A, et al. A circuit-level analytical study on switching behaviors of SiC diode at basic cell for power converters[C]//IEEE Industry Applications Society Meeting Xplore, Edmonton, 2008: 1-8. [23] Zhang H, Tolbert L M, Ozpineci B.System modeling and characterization of SiC Schottky power diodes[C]//IEEE Workshops on Computers in Power Electronics, Troy, USA, 2006: 199-204. [24] Li H, Munk-Nielsen S.Challenges in switching SiC MOSFET without ringing[C]//International Exhibition and Conference for Power Electronics, Intelligent Motion, Renewable Energy and Energy Management, Nuremberg, 2014: 1-6.