Abstract:DC-DC converter is the crucial part that directly affects the operation efficiency of on-board charger. In recent years, researches on PWM soft-switching DC-DC converters have been carried out, and quite a few achievements have been proposed to realize the high-efficiency operation of DC-DC converters during the entire battery charging period. In this paper, the general requirements for DC-DC converter of on-board chargers are specified, and several inherent shortages of conventional primary-side phase-shift full-bridge DC-DC converter are firstly analyzed. Then the research status on PWM soft-switching DC-DC converter of on-board charger is thoroughly reviewed based on the main circuit topologies, gating schemes and control strategies. Finally, the pros and cons of the existing technique schemes are discussed, and future works are pointed out to realize the overall efficiency improvement of DC-DC converters.
[1] Yilmaz M, Krein P T. Review of battery charger topologies, charging power levels, and infrastructure for plug-in electric and hybrid vehicles[J]. IEEE Transactions on Power Electronics, 2013, 28(5): 2151-2169. [2] Musavi F, Eberle W, Dunford W G. A high- performance single-phase AC-DC power factor corrected Boost converter for plug in hybrid electric vehicle battery chargers[C]//IEEE Energy Conversion Congress and Exposition, Atlanta, 2010: 3588-3595. [3] Musavi F, Edinton M, Eberle W, et al. Evaluation and efficiency comparison of front end AC-DC plug-in hybrid charger topologies[J]. IEEE Transactions on Smart Grid, 2012, 3(1): 413-421. [4] Khaligh A, Dusmez S. Comprehensive topological analysis of conductive and inductive charging solutions for plug-in electric vehicles[J]. IEEE Transactions on Vehicular Technology, 2012, 61(8): 3475-3489. [5] Oh C Y, Kim D H, Woo D G. A high-efficient nonisolated single-stage on-board battery charger for electric vehicles[J]. IEEE Transactions on Power Electronics, 2013, 28(12): 5746-5757. [6] Alam M M U, Eberle W, Musavi F. A single-stage bridgeless high efficiency ZVS hybrid-resonant off- road and neighborhood EV battery charger[C]//The 29th Annual IEEE Applied Power Electronics Con- ference and Exposition, Fort Worth, 2014: 3237-3242. [7] Yoon Y D, Kwon S M, Lee J Y. Single-stage battery charger for light electric vehicles based on DC-SRC with current-boosting circuit[J]. Electronics Letters, 2013, 49(16): 1023-1024. [8] Choi W Y. Single-stage battery charger without full-bridge diode rectifier for light electric vehicles[J]. Electronics Letters, 2011, 47(10): 617-618. [9] Li S, Deng J, Mi C C. Single-stage resonant battery charger with inherent power factor correction for electric vehicles[J]. IEEE Transactions on Vehicular Technology, 2013, 62(9): 4336-4344. [10] Kim T H, Lee S J, Choi W. Design and control of the phase shift full bridge converter for the on-board battery charger of the electric forklift[C]//8th Inter- national Conference on Power Electronics-ECCE Asia, Jeju, 2012: 2709-2716. [11] McGrath B P, Holmes D G, McGoldrick P J, et al. Design of a soft-switched 6-kW battery charger for traction applications[J]. IEEE Transactions on Power Electronics, 2007, 22(4): 1136-1144. [12] Wang H Y, Dusmez S, Khaligh A. Design and analysis of a full-bridge LLC-based PEV charger optimized for wide battery voltage range[J]. IEEE Transactions on Vehicular Technology, 2014, 63(4): 1603-1613. [13] 孙孝峰, 申彦峰, 朱云娥, 等. 一种Boost型宽电压范围输入LLC谐振变换器[J]. 中国电机工程学报, 2015, 35(15): 3895-3903. Sun Xiaofeng, Shen Yanfeng, Zhu Yune, et al. A Boost-integrated LLC resonant converter for wide input voltage range[J]. Proceedings of the CSEE, 2015, 35(15): 3895-3903. [14] 李菊, 阮新波. 全桥LLC谐振变换器的混合式控制策[J]. 电工技术学报, 2013, 28(4): 72-79. Li Ju, Ruan Xinbo. Hybrid control strategy of full bridge LLC converters[J]. Transactions of China Electrotechnical Society, 2013, 28(4): 72-79. [15] Fang X, Hu H, Shen J, et al. Operation mode analysis and peak gain approximation of the LLC resonant converter[J]. IEEE Transactions on Power Elec- tronics, 2012, 27(4): 1985-1995. [16] Fang X, Hu H, Chen F, et al. Efficiency-oriented optimal design of the LLC resonant converter based on peak gain placement[J]. IEEE Transactions on Power Electronics, 2013, 28(5): 2285-2296. [17] Beiranvand R, Rashidian B, Zolghadri M R, et al. A design procedure for optimizing the LLC resonant converter as a wide output range voltage source[J]. IEEE Transactions on Power Electronics, 2012, 27(8): 3749-3763. [18] Deng J, Mi C C, Ma R, et al. Design of LLC resonant converters based on operation-mode analysis for level two PHEV battery chargers[J]. IEEE-ASME Transa- ctions on Mechatronics, 2015, 20(4): 1595-1606. [19] Narimani M, Moschopoulos G. A new DC/DC con- verter with wide-range ZVS and reduced circulating current[J]. IEEE Transactions on Power Electronics, 2013, 28(3): 1265-1273. [20] Yadav G N B, Narasamma N L. An active soft switched phase-shifted full-bridge DC-DC converter: analysis, modeling, design, and implementation[J]. IEEE Transactions on Power Electronics, 2014, 29(9): 4538-4550. [21] Safaee A, Jain P K, Bakhshai A. An adaptive ZVS full-bridge DC-DC converter with reduced condu- ction losses and frequency variation range[J]. IEEE Transactions on Power Electronics, 2015, 30(8): 4107-4118. [22] 陈仲, 汪洋, 李梦南. 一种低环流损耗的宽范围ZVS移相全桥变换器[J]. 电工技术学报, 2015, 30(22): 71-79. Chen Zhong, Wang Yang, Li Mengnan. Wide range zero voltage switching phase-shifted full-bridge converter with low circulation loss[J]. Transactions of China Electrotechnical Society, 2015, 30(22): 71-79. [23] 陈仲, 刘沙沙, 汪洋, 等. 辅助电源有源调整的新型ZVS全桥变换器[J]. 电工技术学报, 2014, 29(4): 1-9. Chen Zhong, Liu Shasha, Wang Yang, et al. A new ZVS full bridge converter with active-regulating auxiliary current[J]. Transactions of China Electro- technical Society, 2014, 29(4): 1-9. [24] 孙铁成, 郭超, 娜仁图亚, 等. 具有移相控制的ZVS全桥DC-DC斩波变换器[J]. 电工技术学报, 2014, 29(12): 66-72. Sun Tiecheng, Guo Chao, Naren Tuya, et al. A novel DC-DC ZVS full-bridge converter based on phase- shift control[J]. Transactions of China Electro- technical Society, 2014, 29(12): 66-72. [25] Lin F J, Huang M S, Yeh P Y, et al. DSP-based probabilistic fuzzy neural network control for li-ion battery charger[J]. IEEE Transactions on Power Electronics, 2012, 27(8): 3782-3794. [26] Chen L R. Design of duty-varied voltage pulse charger for improving Li-ion battery-charging response[J]. IEEE Transactions on Industrial Elec- tronics, 2009, 56(2): 480-487. [27] Lee Y D, Park S Y. Electrochemical state-based sinusoidal ripple current charging control[J]. IEEE Transactions on Power Electronics, 2015, 30(8): 4232-4243. [28] Wang S C, Liu Y H. A PSO-based fuzzy-controlled searching for the optimal charge pattern of li-ion batteries[J]. IEEE Transactions on Industrial Elec- tronics, 2015, 62(5): 2983-2993. [29] Liu C L, Chiu Y H, Liu Y H, et al. Optimization of a fuzzy-logic-control-based five-stage battery charger using a fuzzy-based taguchi method[J]. Energies, 2013, 6(7): 3528-3547. [30] Ryu S H, Kim D H, Kim M J, et al. Operating optimization at light load of series resonant DC-DC converter with duty-adjusted frequency control in EVs on-board charger[C]//IEEE Vehicle Power and Propulsion Conference, Seoul, 2012: 777-782. [31] Park K B, Kim C E, Moon G W, et al. Voltage oscillation reduction technique for phase-shift full- bridge converter[J]. IEEE Transactions on Industrial Electronics, 2007, 54(5): 2779-2790. [32] Chen Z, Liu S, Shi L. A soft switching full bridge converter with reduced parasitic oscillation in a wide load range[J]. IEEE Transactions on Power Elec- tronics, 2014, 29(2): 801-811. [33] Chen Z, Shi L, Ji F, et al. Mechanism and suppression countermeasure of voltage oscillation for full bridge converter[J]. IET Power Electronics, 2012, 5(8): 1535-1543. [34] Jain P K, Kang W, Soin H, et al. Analysis and design considerations of a load and line independent zero voltage switching full bridge DC/DC converter topology[J]. IEEE Transactions on Power Electronics, 2002, 17(5): 649-657. [35] Pahlevaninezhad M, Drobnik J, Jain P K, et al. A load adaptive control approach for a zero-voltage-switching DC/DC converter used for electric vehicles[J]. IEEE Transactions on Industrial Electronics, 2012, 59(2): 920-933. [36] 陈仲, 汪洋, 李梦南. ZVS全桥变换器辅助网络技术的比较研究[J]. 电工技术学报, 2015, 30(22): 89-99. Chen Zhong, Wang Yang, Li Mengnan. Comparison study on auxiliary network techniques of zero voltage switching full bridge converter[J]. Transactions of China Electrotechnical Society, 2015, 30(22): 89-99. [37] Pahlevaninezhad M, Danesh P H, Bakhshai A, et al. A load/line adaptive zero voltage switching DC/DC converter used in electric vehicles[C]//IEEE Energy Conversion Congress and Exposition, Denver, 2013: 2065-2070. [38] Pahlevaninezhad M, Pan S Z, Jain P. A ZVS phase- shift full-bridge DC-DC converter with optimized reactive current used for electric vehicles[C]//39th Annual Conference of the IEEE Industrial Electronics Society, Vienna, 2013: 4546-4551. [39] Pahlevaninezhad M, Daneshpajooh H, Bakhshai A, et al. A multi-variable control technique for ZVS phase- shift full-bridge DC/DC converter[C]//28th Annual IEEE Applied Power Electronics Conference and Exposition, Long Beach, 2013: 257-262. [40] Daneshpajooh H, Pahlevaninezhad M, Jain P, et al. An efficient soft switched DC-DC converter for electric vehicles[C]//28th Annual IEEE Applied Power Electronics Conference and Exposition, Long Beach, 2013: 1798-1803. [41] Lee I O, Moon G W. Half-bridge integrated ZVS full-bridge converter with reduced conduction loss for electric vehicle battery chargers[J]. IEEE Transa- ctions on Industrial Electronics, 2014, 61(8): 3978- 3988. [42] Kim J H, Lee I O, Moon G W. Integrated dual full-bridge converter with current-doubler rectifier for EV charger[J]. IEEE Transactions on Power Electronics, 2016, 31(2): 942-951. [43] Kim Y J, Lee J Y. Full-bridge+SRT hybrid DC/DC converter for a 6.6-kW EV on-board charger[J]. IEEE Transactions on Vehicular Technology, 2016, 65(6): 4419-4428. [44] Lee I O. Hybrid PWM-resonant converter for electric vehicle on-board battery charger[J]. IEEE Transa- ctions on Power Electronics, 2016, 31(5): 3639-3649. [45] 刘闯, 刘艳鹏, 刘海洋, 等. 高频隔离型电动汽车快速直流充电器研究[J]. 电工技术学报, 2016, 31(3): 40-49. Liu Chuang, Liu Yanpeng, Liu Haiyang, et al. Quick DC charger for high-frequency isolation electric vehicles[J]. Transactions of China Electrotechnical Society, 2016, 31(3): 40-49. [46] 袁文, 沙德尚, 于梦园. 一种新型的共用滞后桥臂的零电压开关混合型变换器[J]. 电工技术学报, 2015, 30(8): 113-119. Yuan Wen, Sha Deshang, Yu Mengyuan. A novel full-range ZVS hybrid converter with shared lagging leg[J]. Transactions of China Electrotechnical Society, 2015, 30(8): 113-119. [47] Gu B, Lai J S, Kees N, et al. Hybrid-switching full-bridge DC-DC converter with minimal voltage stress of bridge rectifier, reduced circulating losses, and filter requirement for electric vehicle battery chargers[J]. IEEE Transactions on Power Electronics, 2013, 28(3): 1132-1144. [48] Pahlevaninezhad M, Bakhshai A, Jain P. A novel open loop control scheme for a current-driven full- bridge DC-DC converter used in electric vehicles[C]// The 28th Annual IEEE Applied Power Electronics Conference and Exposition, Long Beach, 2013: 2052- 2056. [49] Pahlevaninezhad M, Das P, Drobnik J, et al. A novel ZVZCS full-bridge DC-DC converter used for electric vehicles[J]. IEEE Transactions on Power Electronics, 2012, 27(6): 2752-2769. [50] Gautam D, Musavi F, Edington M, et al. An interleaved ZVS full-bridge DC-DC converter with capacitive output filter for a PHEV charger[C]//IEEE Energy Conversion Congress and Expositon, Raleigh, 2012: 2827-2832. [51] Pahlevaninezhad M, Eren S, Jain P K, et al. Self- sustained oscillating control technique for current- driven full-bridge DC/DC converter[J]. IEEE Transa- ctions on Power Electronics, 2013, 28(11): 5293- 5310. [52] Pahlevaninezhad M, Eren S, Bakhshai A, et al. A series-parallel current-driven full-bridge DC/DC converter[J]. IEEE Transactions on Power Elec- tronics, 2016, 30(2): 1275-1293. [53] Gautam D, Musavi F, Edington M, et al. An auto- motive on-board 3.3kW battery charger for PHEV application[C]//IEEE Vehicle Power and Propulsion Conference, Chicago, 2011: 1-8. [54] Gautam D, Musavi F, Edington M, et al. An auto- motive onboard 3.3-kW battery charger for PHEV application[J]. IEEE Transactions on Vehicular Technology, 2012, 61(8): 3466-3474. [55] Gautam D, Musavi F, Edington M, et al. A zero voltage switching full-bridge DC-DC converter with capacitive output filter for a plug-in-hybrid electric vehicle battery charger[C]//27th Annual IEEE Applied Power Electronics Conference and Expo- sition, Orlando, 2012: 1381-1386. [56] Gautam D, Musavi F, Eberle W, et al. A zero-voltage switching full-bridge DC-DC converter with capaci- tive output filter for plug-in hybrid electric vehicle battery charging[J]. IEEE Transactions on Power Electronics, 2013, 28(12): 5728-5735. [57] Hamada H, Nakaoka M. Analysis and design of a saturable reactor assisted soft-switching full-bridge DC-DC converter[J]. IEEE Transactions on Power Electronics, 1994, 9(3): 309-317. [58] Zhang J, Zhang F, Xie X, et al. A novel ZVS DC-DC converter for high power applications[J]. IEEE Transa- ctions on Power Electronics, 2004, 19(2): 420-429. [59] Mishima T, Nakaoka M. Practical evaluations of a ZVS-PWM DC-DC converter with secondary-side phase-shifting active rectifier[J]. IEEE Transactions on Power Electronics, 2011, 26(12): 3896-3907. [60] Li W, Zong S, Liu F, et al. Secondary-side phase- shift-controlled ZVS DC-DC converter with wide voltage gain for high input voltage applications[J]. IEEE Transactions on Power Electronics, 2013, 28(11): 5128-5139. [61] Wu H, Lu Y, Mu T, et al. A family of soft-switching DC-DC converters based on a phase-shift-controlled active Boost rectifier[J]. IEEE Transactions on Power Electronics, 2015, 30(2): 657-667. [62] Akamatsu K, Mishima T, Nakaoka M. A secondary- side phase-shifted zero voltage and zero current full-range soft-switching PWM DC-DC converter for EV battery chargers[C]//The 1st International Con- ference on Renewable Energy Research and Appli- cations, Nagasaki, 2012: 1-6. [63] Mishima T, Akamatsu K, Nakaoka M. A high frequency-link secondary-side phase-shifted full- range soft switching PWM DC-DC converter with ZCS active rectifier for EV battery chargers[J]. IEEE Transactions on Power Electronics, 2013, 28(12): 5758-5773. [64] Lu Y, Wu H, Sun K, et al. A family of isolated Buck-Boost converters based on semiactive rectifiers for high-output voltage applications[J]. IEEE Transa- ctions on Power Electronics, 2016, 31(9): 6327-6340. [65] Wu H, Mu T, Ge H, et al. Full-range soft-switching- isolated Buck-Boost converters with integrated inter- leaved Boost converter and phase-shifted control[J]. IEEE Transactions on Power Electronics, 2016, 31(2): 987-999. [66] Imbertson P, Mohan N. Asymmetrical duty cycle permits zero switching loss in PWM circuits with no conduction loss penalty[J]. IEEE Transactions on Industry Applications, 1993, 29(1): 121-125. [67] Lin B R, Yeh H P. Analysis and implementation of a zero-voltage switching asymmetric pulse-width modulation converter for high load current appli- cation[J]. IET Power Electronics, 2014, 7(6): 1435- 1443. [68] 陈章勇, 肖皓中, 陈利, 等. 不对称控制全桥副边双谐振DC-DC变换器[J]. 中国电机工程学报, 2013, 33(27): 78-87. Chen Zhangyong, Xiao Haozhong, Chen Li, et al. Asymmetrical full-bridge secondary dual resonance DC-DC converters[J]. Proceedings of the CSEE, 2013, 33(27): 78-87. [69] Choi W Y, Yang M K, Cho H S. High-frequency-link soft-switching PWM DC-DC converter for EV on- board battery chargers[J]. IEEE Transactions on Power Electronics, 2014, 29(8): 4136-4145. [70] Yang M K, Cho H S, Lee S J, et al. High-efficiency soft-switching PWM DC-DC converter for electric vehicle battery chargers[C]//IEEE Energy Conversion Congress and Exposition, Denver, 2013: 1092-1095. [71] Kim J H, Kim C E, Kim J K, et al. Analysis on load-adaptive phase-shift control for high efficiency full-bridge LLC resonant converter under light-load conditions[J]. IEEE Transactions on Power Elec- tronics, 2016, 31(7): 4942-4955. [72] Zhao L, Li H, Liu Y, et al. High efficiency variable-frequency full-bridge converter with a load adaptive control method based on the loss model[J]. Energies, 2015, 8(4): 2647-2673. [73] Chen B Y, Lai Y S. Switching control technique of phase-shift-controlled full-bridge converter to improve efficiency under light-load and standby conditions without additional auxiliary components[J]. IEEE Transactions on Power Electronics, 2010, 25(4): 1001-1012. [74] Oggier G G, Ordonez M. High-efficiency DAB converter using switching sequences and burst mode[J]. IEEE Transactions on Power Electronics, 2016, 31(3): 2069-2082. [75] Lee K, Lee F C, Wei J, et al. Analysis and design of adaptive bus voltage positioning system for two-stage voltage regulators[J]. IEEE Transactions on Power Electronics, 2009, 24(12): 2735-2745. [76] Kim D Y, Kim Y D, Cho K M, et al. Adaptive link capacitor voltage control for server power system[C]// The 6th IEEE International Power Electronics and Motion Control Conference, Wuhan, 2009: 204-209. [77] Lai Y S, Su Z J, Chen W S. New hybrid control technique to improve light load efficiency while meeting the hold-up time requirement for two-stage server power[J]. IEEE Transactions on Power Elec- tronics, 2014, 29(9): 4763-4775. [78] Pahlevaninezhad M, Das P, Drobnik J, et al. A new control approach based on the differential flatness theory for an AC-DC converter used in electric vehicles[J]. IEEE Transactions on Power Electronics, 2012, 27(4): 2085-2103. [79] Pahlevaninezhad M, Das P, Drobnik J, et al. A nonlinear optimal control approach based on the control-Lyapunov function for an AC-DC converter used in electric vehicles[J]. IEEE Transactions on Industrial Informatics, 2012, 8(3): 596-610. [80] Schmenger J, Endres S, Zeltner S, et al. A 22kW on-board charger for automotive applications based on a modular design[C]//IEEE Energy Conversion Conference, Bahru, 2014: 1-6. [81] Schmenger J, Zeltner S, Kramer R, et al. A 3.7kW on-board charger based on modular circuit design[C]// The 41st Annual Conference of the IEEE Industrial Electronics Society, Yokohama, 2015: 1382-1387. [82] 陈武, 曹远志, 崔红芬, 等. 模块化输入串联输出串联高压直流组合系统分布式均压控制策略[J]. 电工技术学报, 2015, 30(3): 187-195. Chen Wu, Cao Yuanzhi, Cui Hongfen, et al. Modular input-series output-series DC high voltage system distributed voltage sharing control strategy[J]. Transactions of China Electrotechnical Society, 2015, 30(3): 187-195. [83] Fang Z, Cai T, Duan S, et al. Optimal design methodology for LLC resonant converter in battery charging applications based on time-weighted average efficiency[J]. IEEE Transactions on Power Electronics, 2015, 30(10): 5469-5483. [84] Musavi F, Marian M, Gautam D S, et al. Control strategies for wide output voltage range LLC resonant DC-DC converters in battery chargers[J]. IEEE Transactions on Vehicular Technology, 2014, 63(3): 1117-1125. [85] Wang H, Dusmez S, Khaligh A. Maximum efficiency point tracking technique for LLC-based PEV chargers through variable DC link control[J]. IEEE Transa- ctions on Industrial Informatics, 2014, 61(11): 6041- 6049. [86] Colak K, Asa E, Bojarski M, et al. Hybrid control approach of CLL resonant converter for EV battery chargers[C]//40th Annual Conference of the IEEE Industrial Electronics Society, Dallas, 2014: 5041- 5046.