电工技术学报  2017, Vol. 32 Issue (21): 1-8    DOI: 10.19595/j.cnki.1000-6753.tces.160837
电力电子与电力传动 |
基于灰色扩展卡尔曼滤波的锂离子电池荷电状态估算
潘海鸿1,2, 吕治强1, 李君子1, 陈琳1,2
1.广西大学机械工程学院 南宁 530000
2.广西制造系统与先进制造技术重点实验室(广西大学机械工程学院) 南宁 530000
Estimation of Lithium-Ion Battery State of Charge Based on Grey Prediction Model-Extended Kalman Filter
Pan Haihong1,2, Lü Zhiqiang1, Li Junzi1, Chen Lin1,2
1.School of Mechanical Engineering Guangxi University Nanning 530000 China
2.Guangxi Key Laboratory of Manufacturing System & Advanced Manufacturing Technology School of Mechanical Engineering Guangxi University Nanning 530000 China
全文: PDF (2202 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 准确估算电池荷电状态(SOC)是电池管理系统的核心技术之一。为提高扩展卡尔曼滤波(EKF)估算电池SOC精度,将灰色预测模型(GM)和EKF融合,构建灰色扩展卡尔曼滤波(GM-EKF)算法用于电池SOC估算。该算法首先用GM(1,1) 替代EKF算法中Jacobian矩阵,对当前时刻电池系统状态预测,即实现系统状态先验估算;再通过观测值对系统状态进行更新和修正,获得后验估算值,实现对电池SOC的估算;最后在自主搭建的电池实验平台上对电池进行模拟工况放电实验。实验结果表明,GM-EKF算法相比EKF算法,估算电池SOC具有更高的精度,估算误差不超过±0.005。研究结果对电池管理系统估算电池SOC具有现实指导意义。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
潘海鸿
吕治强
李君子
陈琳
关键词 锂离子电池电池荷电状态灰色预测模型扩展卡尔曼滤波    
Abstract:Accurate estimation of battery state of charge (SOC) is one of the core technologies of the battery management system.In order to improve accuracy of battery SOC estimation of extended Kalman filter,the grey prediction model (GM) and extended Kalman filter (EKF) are fused to build the GM-EKF algorithm and estimate battery SOC.Firstly,The GM (1,1) is used to replace the Jacobian matrix in EKF and predict the current battery system status as a priori estimate.Then,the priori estimate is updated and revised through observations to get posterior estimation and obtain the battery SOC.The simulated working condition test of battery is implemented on the self-build experiment platform.The experimental results show that GM-EKF algorithm has higher estimation accuracy comparing to EKF algorithm on battery SOC estimation,and the estimation error is less than±0.005.The research result has realistic guiding meanings on battery SOC estimation for battery management system.
Key wordsLithium-ion battery    state of charge    grey prediction model    extended Kalman filter   
收稿日期: 2016-06-02      出版日期: 2017-11-10
PACS: U463  
基金资助:国家自然科学基金(51267002,51667006)、广西自然科学基金(2015GXNSFAA139287)、广西制造系统与先进制造技术重点实验室项目(15-140-30S002)和广西研究生教育创新计划项目(YCSW2017038)资助。
通讯作者: 陈 琳 女,1973年生,教授,博士生导师,研究方向为信号检测与处理和电池管理。E-mail:gxdxcl@163.com   
作者简介: 潘海鸿 男,1966年生,教授,博士生导师,研究方向为嵌入式系统设计和信号处理。E-mail:hustphh@163.com
引用本文:   
潘海鸿, 吕治强, 李君子, 陈琳. 基于灰色扩展卡尔曼滤波的锂离子电池荷电状态估算[J]. 电工技术学报, 2017, 32(21): 1-8. Pan Haihong, Lü Zhiqiang, Li Junzi, Chen Lin. Estimation of Lithium-Ion Battery State of Charge Based on Grey Prediction Model-Extended Kalman Filter. Transactions of China Electrotechnical Society, 2017, 32(21): 1-8.
链接本文:  
https://dgjsxb.ces-transaction.com/CN/10.19595/j.cnki.1000-6753.tces.160837          https://dgjsxb.ces-transaction.com/CN/Y2017/V32/I21/1